- Notifications
You must be signed in to change notification settings - Fork68
PyTorch Dual-Attention LSTM-Autoencoder For Multivariate Time Series
License
JulesBelveze/time-series-autoencoder
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This repository contains an autoencoder for multivariate time series forecasting.It features two attention mechanisms describedinA Dual-Stage Attention-Based Recurrent Neural Network for Time Series Predictionand was inspired bySeanny123's repository.
To clone the repository please run:
git clone https://github.com/JulesBelveze/time-series-autoencoder.gitUse uv
Then installuv
# install uvcurl -LsSf https://astral.sh/uv/install.sh| sh# linux/mac# orbrew install uv# mac with homebrew
cd time-series-autoencoderuv venvuv pip sync pyproject.tomlInstall directly from requirements.txt
pip install -r requirements.txt
The project usesHydra as a configuration parser. You can simply change the parametersdirectly within your.yaml file or you can override/set parameter using flags (for a complete guide please refer tothe docs).
python3 main.py -cn=[PATH_TO_FOLDER_CONFIG] -cp=[CONFIG_NAME]Optional arguments:
-h, --help show this help message and exit --batch-size BATCH_SIZE batch size --output-size OUTPUT_SIZE size of the ouput: default value to 1 for forecasting --label-col LABEL_COL name of the target column --input-att INPUT_ATT whether or not activate the input attention mechanism --temporal-att TEMPORAL_ATT whether or not activate the temporal attention mechanism --seq-len SEQ_LEN window length to use for forecasting --hidden-size-encoder HIDDEN_SIZE_ENCODER size of the encoder's hidden states --hidden-size-decoder HIDDEN_SIZE_DECODER size of the decoder's hidden states --reg-factor1 REG_FACTOR1 contribution factor of the L1 regularization if using a sparse autoencoder --reg-factor2 REG_FACTOR2 contribution factor of the L2 regularization if using a sparse autoencoder --reg1 REG1 activate/deactivate L1 regularization --reg2 REG2 activate/deactivate L2 regularization --denoising DENOISING whether or not to use a denoising autoencoder --do-train DO_TRAIN whether or not to train the model --do-eval DO_EVAL whether or not evaluating the mode --data-path DATA_PATH path to data file --output-dir OUTPUT_DIR name of folder to output files --ckpt CKPT checkpoint path for evaluation- handles multivariate time series
- attention mechanisms
- denoising autoencoder
- sparse autoencoder
You can find under theexamples scripts to train the model in both cases:
About
PyTorch Dual-Attention LSTM-Autoencoder For Multivariate Time Series
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors5
Uh oh!
There was an error while loading.Please reload this page.
