|
| 1 | +_base_= ['../default_runtime.py'] |
| 2 | +n_points=100000 |
| 3 | + |
| 4 | +backend_args=None |
| 5 | +# Uncomment the following if use ceph or other file clients. |
| 6 | +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient |
| 7 | +# for more details. |
| 8 | +# file_client_args = dict( |
| 9 | +# backend='petrel', |
| 10 | +# path_mapping=dict({ |
| 11 | +# './data/scannet/': |
| 12 | +# 's3://openmmlab/datasets/detection3d/scannet_processed/', |
| 13 | +# 'data/scannet/': |
| 14 | +# 's3://openmmlab/datasets/detection3d/scannet_processed/' |
| 15 | +# })) |
| 16 | + |
| 17 | +metainfo=dict(classes='all') |
| 18 | + |
| 19 | +model=dict( |
| 20 | +type='SparseFeatureFusion3DGrounder', |
| 21 | +num_queries=256, |
| 22 | +voxel_size=0.01, |
| 23 | +data_preprocessor=dict(type='Det3DDataPreprocessor', |
| 24 | +mean=[123.675,116.28,103.53], |
| 25 | +std=[58.395,57.12,57.375], |
| 26 | +bgr_to_rgb=True, |
| 27 | +pad_size_divisor=32), |
| 28 | +backbone=dict( |
| 29 | +type='mmdet.ResNet', |
| 30 | +depth=50, |
| 31 | +base_channels=16,# to make it consistent with mink resnet |
| 32 | +num_stages=4, |
| 33 | +out_indices=(0,1,2,3), |
| 34 | +frozen_stages=1, |
| 35 | +norm_cfg=dict(type='BN',requires_grad=False), |
| 36 | +norm_eval=True, |
| 37 | +init_cfg=dict(type='Pretrained',checkpoint='torchvision://resnet50'), |
| 38 | +style='pytorch'), |
| 39 | +backbone_lidar=dict(type='MinkResNet',in_channels=3,depth=34), |
| 40 | +use_xyz_feat=True, |
| 41 | +# change due to no img feature fusion |
| 42 | +neck_3d=dict(type='MinkNeck', |
| 43 | +num_classes=1, |
| 44 | +in_channels=[128,256,512,1024], |
| 45 | +out_channels=256, |
| 46 | +voxel_size=0.01, |
| 47 | +pts_prune_threshold=1000), |
| 48 | +decoder=dict( |
| 49 | +num_layers=6, |
| 50 | +return_intermediate=True, |
| 51 | +layer_cfg=dict( |
| 52 | +# query self attention layer |
| 53 | +self_attn_cfg=dict(embed_dims=256,num_heads=8,dropout=0.0), |
| 54 | +# cross attention layer query to text |
| 55 | +cross_attn_text_cfg=dict(embed_dims=256,num_heads=8,dropout=0.0), |
| 56 | +# cross attention layer query to image |
| 57 | +cross_attn_cfg=dict(embed_dims=256,num_heads=8,dropout=0.0), |
| 58 | +ffn_cfg=dict(embed_dims=256, |
| 59 | +feedforward_channels=2048, |
| 60 | +ffn_drop=0.0)), |
| 61 | +post_norm_cfg=None), |
| 62 | +bbox_head=dict(type='GroundingHead', |
| 63 | +num_classes=256, |
| 64 | +sync_cls_avg_factor=True, |
| 65 | +decouple_bbox_loss=True, |
| 66 | +decouple_groups=4, |
| 67 | +share_pred_layer=True, |
| 68 | +decouple_weights=[0.2,0.2,0.2,0.4], |
| 69 | +contrastive_cfg=dict(max_text_len=256, |
| 70 | +log_scale='auto', |
| 71 | +bias=True), |
| 72 | +loss_cls=dict(type='mmdet.FocalLoss', |
| 73 | +use_sigmoid=True, |
| 74 | +gamma=2.0, |
| 75 | +alpha=0.25, |
| 76 | +loss_weight=1.0), |
| 77 | +loss_bbox=dict(type='BBoxCDLoss', |
| 78 | +mode='l1', |
| 79 | +loss_weight=1.0, |
| 80 | +group='g8')), |
| 81 | +coord_type='DEPTH', |
| 82 | +# training and testing settings |
| 83 | +train_cfg=dict(assigner=dict(type='HungarianAssigner3D', |
| 84 | +match_costs=[ |
| 85 | +dict(type='BinaryFocalLossCost', |
| 86 | +weight=1.0), |
| 87 | +dict(type='BBox3DL1Cost',weight=2.0), |
| 88 | +dict(type='IoU3DCost',weight=2.0) |
| 89 | + ]), ), |
| 90 | +test_cfg=None) |
| 91 | + |
| 92 | +dataset_type='MultiView3DGroundingDataset' |
| 93 | +data_root='data' |
| 94 | + |
| 95 | +train_pipeline= [ |
| 96 | +dict(type='LoadAnnotations3D'), |
| 97 | +dict(type='MultiViewPipeline', |
| 98 | +n_images=20, |
| 99 | +transforms=[ |
| 100 | +dict(type='LoadImageFromFile',backend_args=backend_args), |
| 101 | +dict(type='LoadDepthFromFile',backend_args=backend_args), |
| 102 | +dict(type='ConvertRGBDToPoints',coord_type='CAMERA'), |
| 103 | +dict(type='PointSample',num_points=n_points//10), |
| 104 | +dict(type='Resize',scale=(480,480),keep_ratio=False) |
| 105 | + ]), |
| 106 | +dict(type='AggregateMultiViewPoints',coord_type='DEPTH'), |
| 107 | +dict(type='PointSample',num_points=n_points), |
| 108 | +dict(type='GlobalRotScaleTrans', |
| 109 | +rot_range=[-0.087266,0.087266], |
| 110 | +scale_ratio_range=[.9,1.1], |
| 111 | +translation_std=[.1,.1,.1], |
| 112 | +shift_height=False), |
| 113 | +dict(type='Pack3DDetInputs', |
| 114 | +keys=['img','points','gt_bboxes_3d','gt_labels_3d']) |
| 115 | +] |
| 116 | +test_pipeline= [ |
| 117 | +dict(type='LoadAnnotations3D'), |
| 118 | +dict(type='MultiViewPipeline', |
| 119 | +n_images=50, |
| 120 | +ordered=True, |
| 121 | +transforms=[ |
| 122 | +dict(type='LoadImageFromFile',backend_args=backend_args), |
| 123 | +dict(type='LoadDepthFromFile',backend_args=backend_args), |
| 124 | +dict(type='ConvertRGBDToPoints',coord_type='CAMERA'), |
| 125 | +dict(type='PointSample',num_points=n_points//10), |
| 126 | +dict(type='Resize',scale=(480,480),keep_ratio=False) |
| 127 | + ]), |
| 128 | +dict(type='AggregateMultiViewPoints',coord_type='DEPTH'), |
| 129 | +dict(type='PointSample',num_points=n_points), |
| 130 | +dict(type='Pack3DDetInputs', |
| 131 | +keys=['img','points','gt_bboxes_3d','gt_labels_3d']) |
| 132 | +] |
| 133 | + |
| 134 | +# TODO: to determine a reasonable batch size |
| 135 | +train_dataloader=dict( |
| 136 | +batch_size=12, |
| 137 | +num_workers=12, |
| 138 | +persistent_workers=True, |
| 139 | +sampler=dict(type='DefaultSampler',shuffle=True), |
| 140 | +dataset=dict(type='RepeatDataset', |
| 141 | +times=1, |
| 142 | +dataset=dict(type=dataset_type, |
| 143 | +data_root=data_root, |
| 144 | +ann_file='embodiedscan_infos_train.pkl', |
| 145 | +vg_file='embodiedscan_train_vg_all.json', |
| 146 | +metainfo=metainfo, |
| 147 | +pipeline=train_pipeline, |
| 148 | +test_mode=False, |
| 149 | +filter_empty_gt=True, |
| 150 | +box_type_3d='Euler-Depth'))) |
| 151 | + |
| 152 | +val_dataloader=dict(batch_size=12, |
| 153 | +num_workers=12, |
| 154 | +persistent_workers=True, |
| 155 | +drop_last=False, |
| 156 | +sampler=dict(type='DefaultSampler',shuffle=False), |
| 157 | +dataset=dict(type=dataset_type, |
| 158 | +data_root=data_root, |
| 159 | +ann_file='embodiedscan_infos_val.pkl', |
| 160 | +vg_file='embodiedscan_val_vg_all.json', |
| 161 | +metainfo=metainfo, |
| 162 | +pipeline=test_pipeline, |
| 163 | +test_mode=True, |
| 164 | +filter_empty_gt=True, |
| 165 | +box_type_3d='Euler-Depth')) |
| 166 | + |
| 167 | +test_dataloader=dict(batch_size=12, |
| 168 | +num_workers=12, |
| 169 | +persistent_workers=True, |
| 170 | +drop_last=False, |
| 171 | +sampler=dict(type='DefaultSampler',shuffle=False), |
| 172 | +dataset=dict(type=dataset_type, |
| 173 | +data_root=data_root, |
| 174 | +ann_file='embodiedscan_infos_test.pkl', |
| 175 | +vg_file='embodiedscan_test_vg_all.json', |
| 176 | +metainfo=metainfo, |
| 177 | +pipeline=test_pipeline, |
| 178 | +test_mode=True, |
| 179 | +filter_empty_gt=True, |
| 180 | +box_type_3d='Euler-Depth')) |
| 181 | + |
| 182 | +val_evaluator=dict(type='GroundingMetric') |
| 183 | +test_evaluator=dict(type='GroundingMetric',format_only=True) |
| 184 | + |
| 185 | +# training schedule for 1x |
| 186 | +train_cfg=dict(type='EpochBasedTrainLoop',max_epochs=12,val_interval=12) |
| 187 | +val_cfg=dict(type='ValLoop') |
| 188 | +test_cfg=dict(type='TestLoop') |
| 189 | + |
| 190 | +# optimizer |
| 191 | +lr=5e-4 |
| 192 | +optim_wrapper=dict(type='OptimWrapper', |
| 193 | +optimizer=dict(type='AdamW',lr=lr,weight_decay=0.0005), |
| 194 | +paramwise_cfg=dict( |
| 195 | +custom_keys={ |
| 196 | +'text_encoder':dict(lr_mult=0.0), |
| 197 | +'decoder':dict(lr_mult=0.1,decay_mult=1.0) |
| 198 | + }), |
| 199 | +clip_grad=dict(max_norm=10,norm_type=2)) |
| 200 | + |
| 201 | +# learning rate |
| 202 | +param_scheduler=dict(type='MultiStepLR', |
| 203 | +begin=0, |
| 204 | +end=12, |
| 205 | +by_epoch=True, |
| 206 | +milestones=[8,11], |
| 207 | +gamma=0.1) |
| 208 | + |
| 209 | +custom_hooks= [dict(type='EmptyCacheHook',after_iter=True)] |
| 210 | + |
| 211 | +# hooks |
| 212 | +default_hooks=dict( |
| 213 | +checkpoint=dict(type='CheckpointHook',interval=1,max_keep_ckpts=3)) |
| 214 | + |
| 215 | +# vis_backends = [ |
| 216 | +# dict(type='TensorboardVisBackend'), |
| 217 | +# dict(type='LocalVisBackend') |
| 218 | +# ] |
| 219 | +# visualizer = dict( |
| 220 | +# type='Det3DLocalVisualizer', |
| 221 | +# vis_backends=vis_backends, name='visualizer') |
| 222 | + |
| 223 | +find_unused_parameters=True |
| 224 | +load_from='/mnt/petrelfs/wangtai/EmbodiedScan/work_dirs/mv-3ddet-challenge/epoch_12.pth'# noqa |