- Notifications
You must be signed in to change notification settings - Fork23
ENH: kernels forrandom.vonmisses; part 2#681
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.
Already on GitHub?Sign in to your account
base:master
Are you sure you want to change the base?
Uh oh!
There was an error while loading.Please reload this page.
Changes fromall commits
63eeab15e6086c42685176f77dc0b5f539ae9c17c775dc9857221851df3160f0e743d2ff8de8e1492555233cd5930637c63222bc52c3eeb2b2b3c42File filter
Filter by extension
Conversations
Uh oh!
There was an error while loading.Please reload this page.
Jump to
Uh oh!
There was an error while loading.Please reload this page.
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1261,6 +1261,8 @@ void dpnp_rng_vonmises_large_kappa_c(void* result, const _DataType mu, const _Da | ||
| _DataType s_minus_one, hpt, r_over_two_kappa_minus_one, rho_minus_one; | ||
| _DataType* Uvec = nullptr; | ||
| _DataType* Vvec = nullptr; | ||
| bool* result_ready = nullptr; | ||
| bool* result_mask = nullptr; | ||
| const _DataType d_zero = 0.0, d_one = 1.0; | ||
| assert(kappa > 1.0); | ||
| @@ -1276,49 +1278,59 @@ void dpnp_rng_vonmises_large_kappa_c(void* result, const _DataType mu, const _Da | ||
| Uvec = reinterpret_cast<_DataType*>(dpnp_memory_alloc_c(size * sizeof(_DataType))); | ||
| Vvec = reinterpret_cast<_DataType*>(dpnp_memory_alloc_c(size * sizeof(_DataType))); | ||
| result_ready = reinterpret_cast<bool*>(dpnp_memory_alloc_c(1 * sizeof(bool))); | ||
| result_ready[0] = false; | ||
| result_mask = reinterpret_cast<bool*>(dpnp_memory_alloc_c(size * sizeof(bool))); | ||
| dpnp_full_c<bool>(result_ready, result_mask, size); | ||
| while(!result_ready[0]) | ||
| { | ||
| mkl_rng::uniform<_DataType> uniform_distribution_u(d_zero, 0.5 * M_PI); | ||
| auto uniform_distr_u_event = mkl_rng::generate(uniform_distribution_u, DPNP_RNG_ENGINE, size, Uvec); | ||
| mkl_rng::uniform<_DataType> uniform_distribution_v(d_zero, d_one); | ||
| auto uniform_distr_v_event = mkl_rng::generate(uniform_distribution_v, DPNP_RNG_ENGINE, size, Vvec); | ||
| cl::sycl::range<1> gws(size); | ||
| auto paral_kernel_some = [&](cl::sycl::handler& cgh) { | ||
Contributor There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others.Learn more. Kernel inside the loop with bigger trip count. It would be more efficient to parallelize (make kernel) the algorithm by bigger value
It is hard to predict it with no perf measurements but I would vote that parallelization with bigger number of threads should be better. | ||
| cgh.depends_on({uniform_distr_u_event, uniform_distr_v_event}); | ||
| cgh.parallel_for(gws, [=](cl::sycl::id<1> global_id) { | ||
| size_t i = global_id[0]; | ||
| if (!result_mask[i]) { | ||
| _DataType sn, cn, sn2, cn2; | ||
| _DataType neg_W_minus_one, V, Y; | ||
| sn =cl::sycl::sin(Uvec[i]); | ||
| cn =cl::sycl::cos(Uvec[i]); | ||
| V = Vvec[i]; | ||
| sn2 = sn * sn; | ||
| cn2 = cn * cn; | ||
| neg_W_minus_one = s_minus_one * sn2 / (0.5 * s_minus_one + cn2); | ||
| Y = kappa * (s_minus_one + neg_W_minus_one); | ||
| if ((Y * (2 - Y) >= V) || (cl::sycl::log(Y / V) + 1 >= Y)) | ||
| { | ||
| Y = neg_W_minus_one * (2 - neg_W_minus_one); | ||
| if (Y < 0) | ||
| Y = 0.0; | ||
| else if (Y > 1.0) | ||
| Y = 1.0; | ||
| result1[i] = cl::sycl::asin(cl::sycl::sqrt(Y)); | ||
| result_mask[i] = true; | ||
| } | ||
| } | ||
| }); | ||
| }; | ||
| auto some_event = DPNP_QUEUE.submit(paral_kernel_some); | ||
| some_event.wait(); | ||
| dpnp_all_c<bool, bool>(result_mask, result_ready, size); | ||
| } | ||
| dpnp_memory_free_c(Uvec); | ||
| dpnp_memory_free_c(result_ready); | ||
| dpnp_memory_free_c(result_mask); | ||
| mkl_rng::uniform<_DataType> uniform_distribution(d_zero, d_one); | ||
| auto uniform_distr_event = mkl_rng::generate(uniform_distribution, DPNP_RNG_ENGINE, size, Vvec); | ||
| @@ -1357,6 +1369,8 @@ void dpnp_rng_vonmises_small_kappa_c(void* result, const _DataType mu, const _Da | ||
| _DataType rho_over_kappa, rho, r, s_kappa; | ||
| _DataType* Uvec = nullptr; | ||
| _DataType* Vvec = nullptr; | ||
| bool* result_ready = nullptr; | ||
| bool* result_mask = nullptr; | ||
| const _DataType d_zero = 0.0, d_one = 1.0; | ||
| @@ -1372,35 +1386,46 @@ void dpnp_rng_vonmises_small_kappa_c(void* result, const _DataType mu, const _Da | ||
| Uvec = reinterpret_cast<_DataType*>(dpnp_memory_alloc_c(size * sizeof(_DataType))); | ||
| Vvec = reinterpret_cast<_DataType*>(dpnp_memory_alloc_c(size * sizeof(_DataType))); | ||
| result_ready = reinterpret_cast<bool*>(dpnp_memory_alloc_c(1 * sizeof(bool))); | ||
| result_ready[0] = false; | ||
| result_mask = reinterpret_cast<bool*>(dpnp_memory_alloc_c(size * sizeof(bool))); | ||
| dpnp_full_c<bool>(result_ready, result_mask, size); | ||
| while (!result_ready[0]) | ||
| { | ||
| mkl_rng::uniform<_DataType> uniform_distribution_u(d_zero, M_PI); | ||
| auto uniform_distr_u_event = mkl_rng::generate(uniform_distribution_u, DPNP_RNG_ENGINE, size, Uvec); | ||
| mkl_rng::uniform<_DataType> uniform_distribution_v(d_zero, d_one); | ||
| auto uniform_distr_v_event = mkl_rng::generate(uniform_distribution_v, DPNP_RNG_ENGINE, size, Vvec); | ||
| cl::sycl::range<1> gws((size)); | ||
| auto paral_kernel_some = [&](cl::sycl::handler& cgh) { | ||
| cgh.depends_on({uniform_distr_u_event, uniform_distr_v_event}); | ||
| cgh.parallel_for(gws, [=](cl::sycl::id<1> global_id) { | ||
| size_t i = global_id[0]; | ||
| if (!result_mask[i]) { | ||
| _DataType Z, W, Y, V; | ||
| Z = cl::sycl::cos(Uvec[i]); | ||
| V = Vvec[i]; | ||
| W = (kappa + s_kappa * Z) / (s_kappa + kappa * Z); | ||
| Y = s_kappa - kappa * W; | ||
| if ((Y * (2 - Y) >= V) || (cl::sycl::log(Y / V) + 1 >= Y)) | ||
| { | ||
| result1[i] = cl::sycl::acos(W); | ||
| result_mask[i] = true; | ||
| } | ||
| } | ||
| }); | ||
| }; | ||
| auto some_event = DPNP_QUEUE.submit(paral_kernel_some); | ||
| some_event.wait(); | ||
| dpnp_all_c<bool, bool>(result_mask, result_ready, size); | ||
| } | ||
| dpnp_memory_free_c(Uvec); | ||
| dpnp_memory_free_c(result_ready); | ||
| dpnp_memory_free_c(result_mask); | ||
| mkl_rng::uniform<_DataType> uniform_distribution(d_zero, d_one); | ||
| auto uniform_distr_event = mkl_rng::generate(uniform_distribution, DPNP_RNG_ENGINE, size, Vvec); | ||