Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

🐍 Data Analysis with the Pandas Library & Notes 📊📈

License

NotificationsYou must be signed in to change notification settings

IDouble/Pandas-Python-Data-Analysis-Playground

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🐍 Data Analysis with the Pandas Library 📊📈

Installation Pandas ⬇️

The easiest way to install Pandas is with pip. Type in your console:

pip install pandas

Load DataFrame from a CSV File 📂

Load a DateFrame from a CSV File. (Method .read_csv("your_csv_file.csv"))

import pandas as pddf = pd.read_csv("new_york_city.csv")

Print Rows from a Dateframe using an Integer Index 🗃

Print 10 Rows from a Dateframe using an Integer Index from 10-20. (Method .iloc[from:to])

# Print 10 Rows from Dateframe with Integer Index from 10-20print(df.iloc[10:20])

Print the first Rows from a Dateframe 🗃

Print the first 10 Rows from a Dateframe. (Method .head(amount))

# Print the first 10 Rows from the Dateframeprint(df.head(10))

Print Rows from a Dateframe and sort them with an attribute 🗃

Print 10 Rows from a Dateframe using an Integer Index from 0-10 and sort them with an attribute. (Method .sort_values(["Start Time"]))

# Prints the first 10 Rows, sorted by Start Timeprint(df.iloc[0:10].sort_values(["Start Time"]))

Print 10 random Rows from a Dateframe 🗃

Print 10 random Rows from a Dateframe. (Method .sample(amount))

# Print 10 random Rows from a Dateframeprint(df.sample(10))

Create Data Frame 🗂

# Create data for the Data Framedata = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],        'year': [2000, 2001, 2002, 2001, 2002, 2003],        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}# Create Data Framedf = pd.DataFrame(data)

Draw Candlestick Chart with moving averages 📈

import pandas as pdimport matplotlib.pyplot as pltimport datetimefrom mpl_finance import candlestick_ohlcimport matplotlib.dates as mdatesdf = pd.read_csv('candlestick_chart.csv')# ensuring only equity series is considereddf = df.loc[df['Series'] == 'EQ']# Converting date to pandas datetime formatdf['Date'] = pd.to_datetime(df['Date'])df["Date"] = df["Date"].apply(mdates.date2num)# Creating required data in new DataFrame OHLCohlc= df[['Date', 'Open Price', 'High Price', 'Low Price','Close Price']].copy()# In case you want to check for shorter timespan# ohlc =ohlc.tail(60)# ohlc['SMA50'] = ohlc["Close Price"].rolling(50).mean()f1, ax = plt.subplots(figsize = (10,5))# plot the candlestickscandlestick_ohlc(ax, ohlc.values, width=.6, colorup='green', colordown='red')ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))# Creating SMA columnsohlc['SMA5'] = ohlc["Close Price"].rolling(5).mean()ohlc['SMA10'] = ohlc["Close Price"].rolling(10).mean()ohlc['SMA20'] = ohlc["Close Price"].rolling(20).mean()ohlc['SMA50'] = ohlc["Close Price"].rolling(50).mean()ohlc['SMA100'] = ohlc["Close Price"].rolling(100).mean()ohlc['SMA200'] = ohlc["Close Price"].rolling(200).mean()# Plotting SMA columns# ax.plot(ohlc['Date'], ohlc['SMA5'], color = 'blue', label = 'SMA5')# ax.plot(ohlc['Date'], ohlc['SMA10'], color = 'blue', label = 'SMA10')# ax.plot(ohlc['Date'], ohlc['SMA20'], color = 'red', label = 'SMA20')ax.plot(ohlc['Date'], ohlc['SMA50'], color = 'green', label = 'SMA50')# ax.plot(ohlc.index, df['SMA100'], color = 'blue', label = 'SMA100')ax.plot(ohlc['Date'], ohlc['SMA200'], color = 'blue', label = 'SMA200')plt.show()

Draw financial Chart 💹

import pandas as pdimport matplotlib.pyplot as pltimport matplotlibfrom datetime import datetimefig = plt.figure()ax = fig.add_subplot(1, 1, 1)data = pd.read_csv('spx.csv', index_col=0, parse_dates=True)spx = data['SPX']spx.plot(ax=ax, style='k-')crisis_data = [    (datetime(2007, 10, 11), 'Peak of bull market'),    (datetime(2008, 3, 12), 'Bear Stearns Fails'),    (datetime(2008, 9, 15), 'Lehman Bankruptcy')]for date, label in crisis_data:    ax.annotate(label, xy=(date, spx.asof(date) + 75),                xytext=(date, spx.asof(date) + 225),                arrowprops=dict(facecolor='black', headwidth=4, width=2,                                headlength=4),                horizontalalignment='left', verticalalignment='top')# Zoom in on 2007-2010ax.set_xlim(['1/1/2007', '1/1/2011'])ax.set_ylim([600, 1800])ax.set_title('Important dates in the 2008-2009 financial crisis')fig.show()

Binance Ready to give crypto a try ? buy bitcoin and other cryptocurrencies on binance

Releases

No releases published

Packages

No packages published

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp