You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: index.md
+97-61Lines changed: 97 additions & 61 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -24,6 +24,7 @@ This website gives a brief overview of our [HOLMS library](https://github.com/HO
24
24
-[Cosimo Perini Brogi](https://logicosimo-gitlab-io-logicosimo-ad8371f8e99a5e895c64ff5b4f9ba89.gitlab.io/), IMT School for Advanced Studies Lucca, Italy
25
25
- Leonardo Quartini, University of Florence, Italy
26
26
27
+
27
28
##Principal definitions and theorems
28
29
29
30
###Axiomatic Definition
@@ -50,7 +51,7 @@ Kripke's Semantics of formulae.
50
51
```
51
52
let holds =
52
53
let pth = prove
53
-
(`(!WP. P WP) <=> (!W R. P (W,R))`,
54
+
(`(!WP. P WP) <=> (!W:W->bool R:W->W->bool. P (W,R))`,
54
55
MATCH_ACCEPT_TAC FORALL_PAIR_THM) in
55
56
(end_itlist CONJ o map (REWRITE_RULE[pth] o GEN_ALL) o CONJUNCTS o
56
57
new_recursive_definition form_RECURSION)
@@ -66,84 +67,112 @@ let holds =
66
67
!w'. w' IN FST WR /\ SND WR w w' ==> holds WR V p w')`;;
67
68
68
69
let holds_in = new_definition
69
-
`holds_in (W,R) p <=> !V w. w IN W ==> holds (W,R) V p w`;;
70
+
`holds_in (W,R) p <=> !V w:W. w IN W ==> holds (W,R) V p w`;;
70
71
71
72
let valid = new_definition
72
-
`L |= p <=> !f. L f ==> holds_in f p`;;
73
+
`L |= p <=> !f:(W->bool)#(W->W->bool). f IN L ==> holds_in f p`;;
73
74
```
74
75
75
-
###Soundness and consistency of GL
76
-
```
77
-
GL_consistent
78
-
|- ~ [GL_AX . {} |~ False]
79
-
```
80
76
###Soundness and consistency of K
81
77
```
82
78
K_CONSISTENT
83
79
|- ~ [{} . {} |~ False]
84
80
```
85
81
82
+
###Soundness and consistency of GL
83
+
```
84
+
GL_consistent
85
+
|- ~ [GL_AX . {} |~ False]
86
+
```
87
+
86
88
###Completeness theorem
87
89
88
90
The proof is organized in three steps.
89
91
90
92
####STEP 1
91
93
Identification of a non-empty set of possible worlds, given by a subclass of maximal consistent sets of formulas.
92
94
93
-
Parametric Definitions
95
+
Parametric Definitions in gen_completness.ml
94
96
```
95
-
let GEN_STANDARD_FRAME = new_definition
96
-
`GEN_STANDARD_FRAME K S p (W,R) <=>
97
-
W = {w | MAXIMAL_CONSISTENT S p w /\
97
+
let FRAME_DEF = new_definition
98
+
`FRAME = {(W:W->bool,R:W->W->bool) | ~(W = {}) /\
99
+
(!x y:W. R x y ==> x IN W /\ y IN W)}`;;
100
+
101
+
let GEN_STANDARD_FRAME_DEF = new_definition
102
+
`GEN_STANDARD_FRAME P S p =
103
+
FRAME INTER P INTER
104
+
{(W,R) | W = {w | MAXIMAL_CONSISTENT S p w /\
98
105
(!q. MEM q w ==> q SUBSENTENCE p)} /\
99
-
K (W,R) /\
100
-
(!q w. Box q SUBFORMULA p /\ w IN W
101
-
==> (MEM (Box q) w <=> !x. R w x ==> MEM q x)) /\
102
-
(K (W,R) ==> FRAME(W,R))`;;
106
+
(!q w. Box q SUBFORMULA p /\ w IN W
107
+
==> (MEM (Box q) w <=> !x. R w x ==> MEM q x))}`;;
103
108
104
-
letGEN_STANDARD_MODEL = new_definition
105
-
`GEN_STANDARD_MODELK S p (W,R) V <=>
106
-
GEN_STANDARD_FRAMEK S p (W,R) /\
109
+
letGEN_STANDARD_MODEL_DEF = new_definition
110
+
`GEN_STANDARD_MODELP S p (W,R) V <=>
111
+
(W,R) INGEN_STANDARD_FRAMEP S p /\
107
112
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p))`;;
108
113
```
109
114
110
-
Definitions inK
115
+
Definitions ink_completness.ml
111
116
```
112
-
let K_FRAME = new_definition
113
-
`K_FRAME (W,R) <=> FRAME(W,R) /\ FINITE W`;;
117
+
let K_FRAME_DEF = new_definition
118
+
`K_FRAME = {(W:W->bool,R) | (W,R) IN FRAME /\ FINITE W}`;;