Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Multi-lingual large voice generation model, providing inference, training and deployment full-stack ability.

License

NotificationsYou must be signed in to change notification settings

FunAudioLLM/CosyVoice

Repository files navigation

SVG Banners

👉🏻 CosyVoice 👈🏻

CosyVoice 2.0:Demos;Paper;Modelscope;HuggingFace

CosyVoice 1.0:Demos;Paper;Modelscope

Highlight🔥

CosyVoice 2.0 has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.

Multilingual

  • Supported Language: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
  • Crosslingual & Mixlingual:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.

Ultra-Low Latency

  • Bidirectional Streaming Support: CosyVoice 2.0 integrates offline and streaming modeling technologies.
  • Rapid First Packet Synthesis: Achieves latency as low as 150ms while maintaining high-quality audio output.

High Accuracy

  • Improved Pronunciation: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
  • Benchmark Achievements: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.

Strong Stability

  • Consistency in Timbre: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
  • Cross-language Synthesis: Marked improvements compared to version 1.0.

Natural Experience

  • Enhanced Prosody and Sound Quality: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
  • Emotional and Dialectal Flexibility: Now supports more granular emotional controls and accent adjustments.

Roadmap

  • 2024/12

    • 25hz cosyvoice 2.0 released
  • 2024/09

    • 25hz cosyvoice base model
    • 25hz cosyvoice voice conversion model
  • 2024/08

    • Repetition Aware Sampling(RAS) inference for llm stability
    • Streaming inference mode support, including kv cache and sdpa for rtf optimization
  • 2024/07

    • Flow matching training support
    • WeTextProcessing support when ttsfrd is not available
    • Fastapi server and client

Install

Clone and install

  • Clone the repo
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git# If you failed to clone submodule due to network failures, please run following command until successcd CosyVoicegit submodule update --init --recursive
conda create -n cosyvoice -y python=3.10conda activate cosyvoice# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.conda install -y -c conda-forge pynini==2.1.5pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com# If you encounter sox compatibility issues# ubuntusudo apt-get install sox libsox-dev# centossudo yum install sox sox-devel

Model download

We strongly recommend that you download our pretrainedCosyVoice2-0.5BCosyVoice-300MCosyVoice-300M-SFTCosyVoice-300M-Instruct model andCosyVoice-ttsfrd resource.

# SDK模型下载frommodelscopeimportsnapshot_downloadsnapshot_download('iic/CosyVoice2-0.5B',local_dir='pretrained_models/CosyVoice2-0.5B')snapshot_download('iic/CosyVoice-300M',local_dir='pretrained_models/CosyVoice-300M')snapshot_download('iic/CosyVoice-300M-25Hz',local_dir='pretrained_models/CosyVoice-300M-25Hz')snapshot_download('iic/CosyVoice-300M-SFT',local_dir='pretrained_models/CosyVoice-300M-SFT')snapshot_download('iic/CosyVoice-300M-Instruct',local_dir='pretrained_models/CosyVoice-300M-Instruct')snapshot_download('iic/CosyVoice-ttsfrd',local_dir='pretrained_models/CosyVoice-ttsfrd')
# git模型下载,请确保已安装git lfsmkdir -p pretrained_modelsgit clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5Bgit clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300Mgit clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hzgit clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFTgit clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instructgit clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd

Optionally, you can unzipttsfrd resouce and installttsfrd package for better text normalization performance.

Notice that this step is not necessary. If you do not installttsfrd package, we will use WeTextProcessing by default.

cd pretrained_models/CosyVoice-ttsfrd/unzip resource.zip -d.pip install ttsfrd_dependency-0.1-py3-none-any.whlpip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl

Basic Usage

We strongly recommend usingCosyVoice2-0.5B for better performance.Follow code below for detailed usage of each model.

importsyssys.path.append('third_party/Matcha-TTS')fromcosyvoice.cli.cosyvoiceimportCosyVoice,CosyVoice2fromcosyvoice.utils.file_utilsimportload_wavimporttorchaudio

CosyVoice2 Usage

cosyvoice=CosyVoice2('pretrained_models/CosyVoice2-0.5B',load_jit=False,load_trt=False,fp16=False)# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference# zero_shot usageprompt_speech_16k=load_wav('./asset/zero_shot_prompt.wav',16000)fori,jinenumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。','希望你以后能够做的比我还好呦。',prompt_speech_16k,stream=False)):torchaudio.save('zero_shot_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248fori,jinenumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。',prompt_speech_16k,stream=False)):torchaudio.save('fine_grained_control_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)# instruct usagefori,jinenumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。','用四川话说这句话',prompt_speech_16k,stream=False)):torchaudio.save('instruct_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)# bistream usage, you can use generator as input, this is useful when using text llm model as input# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence lengthdeftext_generator():yield'收到好友从远方寄来的生日礼物,'yield'那份意外的惊喜与深深的祝福'yield'让我心中充满了甜蜜的快乐,'yield'笑容如花儿般绽放。'fori,jinenumerate(cosyvoice.inference_zero_shot(text_generator(),'希望你以后能够做的比我还好呦。',prompt_speech_16k,stream=False)):torchaudio.save('zero_shot_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)

CosyVoice Usage

cosyvoice=CosyVoice('pretrained_models/CosyVoice-300M-SFT',load_jit=False,load_trt=False,fp16=False)# sft usageprint(cosyvoice.list_available_spks())# change stream=True for chunk stream inferencefori,jinenumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?','中文女',stream=False)):torchaudio.save('sft_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)cosyvoice=CosyVoice('pretrained_models/CosyVoice-300M')# or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Koreanprompt_speech_16k=load_wav('./asset/zero_shot_prompt.wav',16000)fori,jinenumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。','希望你以后能够做的比我还好呦。',prompt_speech_16k,stream=False)):torchaudio.save('zero_shot_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)# cross_lingual usageprompt_speech_16k=load_wav('./asset/cross_lingual_prompt.wav',16000)fori,jinenumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.',prompt_speech_16k,stream=False)):torchaudio.save('cross_lingual_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)# vc usageprompt_speech_16k=load_wav('./asset/zero_shot_prompt.wav',16000)source_speech_16k=load_wav('./asset/cross_lingual_prompt.wav',16000)fori,jinenumerate(cosyvoice.inference_vc(source_speech_16k,prompt_speech_16k,stream=False)):torchaudio.save('vc_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)cosyvoice=CosyVoice('pretrained_models/CosyVoice-300M-Instruct')# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]fori,jinenumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。','中文男','Theo\'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.',stream=False)):torchaudio.save('instruct_{}.wav'.format(i),j['tts_speech'],cosyvoice.sample_rate)

Start web demo

You can use our web demo page to get familiar with CosyVoice quickly.

Please see the demo website for details.

# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inferencepython3webui.py--port50000--model_dirpretrained_models/CosyVoice-300M

Advanced Usage

For advanced user, we have provided train and inference scripts inexamples/libritts/cosyvoice/run.sh.

Build for deployment

Optionally, if you want service deployment,you can run following steps.

cd runtime/pythondocker build -t cosyvoice:v1.0.# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference# for grpc usagedocker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c"cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"cd grpc&& python3 client.py --port 50000 --mode<sft|zero_shot|cross_lingual|instruct># for fastapi usagedocker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c"cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"cd fastapi&& python3 client.py --port 50000 --mode<sft|zero_shot|cross_lingual|instruct>

Discussion & Communication

You can directly discuss onGithub Issues.

You can also scan the QR code to join our official Dingding chat group.

Acknowledge

  1. We borrowed a lot of code fromFunASR.
  2. We borrowed a lot of code fromFunCodec.
  3. We borrowed a lot of code fromMatcha-TTS.
  4. We borrowed a lot of code fromAcademiCodec.
  5. We borrowed a lot of code fromWeNet.

Disclaimer

The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.


[8]ページ先頭

©2009-2025 Movatter.jp