Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A relation-free graph constrcution method for efficient GraphRAG.

License

NotificationsYou must be signed in to change notification settings

DEEP-PolyU/LinearRAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A relation-free graph construction method for efficient GraphRAG. It eliminates LLM token costs during graph construction, making GraphRAG faster and more efficient than ever.

arXiv:2506.08938HuggingFaceGitHub


🚀Highlights

  • Context-Preserving: Relation-free graph construction, relying on lightweight entity recognition and semantic linking to achieve comprehensive contextual comprehension.
  • Complex Reasoning: Enables deep retrieval via semantic bridging, achieving multi-hop reasoning in a single retrieval pass without requiring explicit relational graphs.
  • High Scalability: Zero LLM token consumption, faster processing speed, and linear time/space complexity.

Framework Overview


🎉News

  • [2025-10-27] We releaseLinearRAG, a relation-free graph construction method for efficient GraphRAG.
  • [2025-06-06] We releaseGraphRAG-Bench, the benchmark for evaluating GraphRAG models.
  • [2025-01-21] We release theGraphRAG survey.

🛠️Usage

1️⃣ Install Dependencies

Step 1: Install Python packages

pip install -r requirements.txt

Step 2: Download Spacy language model

python -m spacy download en_core_web_trf

Note: For themedical dataset, you need to install the scientific/biomedical Spacy model:

pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.3/en_core_sci_scibert-0.5.3.tar.gz

Step 3: Set up your OpenAI API key

export OPENAI_API_KEY="your-api-key-here"export OPENAI_BASE_URL="your-base-url-here"

Step 4: Download Datasets

Download the datasets from HuggingFace and place them in thedataset/ folder:

git clone https://huggingface.co/datasets/Zly0523/linear-ragcp -r linear-rag/dataset/* dataset/

Step 5: Prepare Embedding Model

Make sure the embedding model is available at:

model/all-mpnet-base-v2/

2️⃣ Quick Start Example

SPACY_MODEL="en_core_web_trf"EMBEDDING_MODEL="model/all-mpnet-base-v2"DATASET_NAME="2wikimultihop"LLM_MODEL="gpt-4o-mini"MAX_WORKERS=16python run.py \    --spacy_model${SPACY_MODEL} \    --embedding_model${EMBEDDING_MODEL} \    --dataset_name${DATASET_NAME} \    --llm_model${LLM_MODEL} \    --max_workers${MAX_WORKERS}

🎯Performance

framework

Main results of end-to-end performance

framework

framework

framework

Efficiency and performance comparison.

📖 Citation

If you find this work helpful, please consider citing us:

@article{zhuang2025linearrag,title={LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora},author={Zhuang, Luyao and Chen, Shengyuan and Xiao, Yilin and Zhou, Huachi and Zhang, Yujing and Chen, Hao and Zhang, Qinggang and Huang, Xiao},journal={arXiv preprint arXiv:2510.10114},year={2025}}

This project is licensed under the GNU General Public License v3.0 (License).

📬 Contact

✉️ Email:zhuangluyao523@gmail.com

About

A relation-free graph constrcution method for efficient GraphRAG.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp