Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
NotificationsYou must be signed in to change notification settings

DEAR-dataset/code

Repository files navigation

This is atorch.utils.data.Dataset classfor the Deep Evaluation of Acoustic Representations (DEAR) dataset.The correspondingpaper is on the arXiv and thedata is on Zenodo.

Usage

Copy the dear directory to the source repository,then spawn aDataset for an evaluation task using the desired class.

Environment

environment_eval_dataset=EnvironmentDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.DISCRETE,)

Indoor or Outdoor

indoor_or_outdoor_eval_dataset=IndoorOutdoorDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.DISCRETE,)

Stationary or Transient Noise

noise_eval_dataset=StationaryTransientNoiseDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.DISCRETE,)

Signal to Noise Ration (SNR)

snr_eval_dataset=SNRDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.CONTINUOUS,)

Speech Present

speech_present_eval_dataset=SpeechDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,speech_present=True,target_variable_type=TargetVariableType.DISCRETE,)

Speakers Active

speakers_active_eval_dataset=SpeechDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,speech_present=False,target_variable_type=TargetVariableType.CONTINUOUS,)

Direct-to-Reverberant Ratio (DRR)

drr_eval_dataset=DRRDEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.CONTINUOUS,)

RT60

rt60_eval_dataset=RT60DEARDataset(base_path=Path("/data/evaluation/dear"),split=DatasetType.TRAIN,target_variable_type=TargetVariableType.CONTINUOUS,)

Example

Use the standard PyTorch pattern to run the evaluation, e.g.

model=Wav2Vec2Model()forsegments,labelsinrt60_eval_dataset:predicted_labels=model(segments)score=metric(labels,predicted_labels)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp