- Notifications
You must be signed in to change notification settings - Fork0
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling
License
CesarCadena/caffe-segnet
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is a modified version ofCaffe which supports theSegNet architecture
As described inSegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla [http://arxiv.org/abs/1511.00561]
If you would just like to try out a pretrained example model, then you can find the model used in theSegNet webdemo and a script to run a live webcam demo here:https://github.com/alexgkendall/SegNet-Tutorial
For a more detailed introduction to this software please see the tutorial here:http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
Prepare a text file of space-separated paths to images (jpegs or pngs) and corresponding label images alternatively e.g./path/to/im1.png /another/path/to/lab1.png /path/to/im2.png /path/lab2.png ...
Label images must be single channel, with each value from 0 being a separate class. The example net uses an image size of 360 by 480.
Example net specification and solver prototext files are given in examples/segnet.To train a model, alter the data path in thedata
layers innet.prototxt
to be your dataset.txt file (as described above).
In the last convolution layer, changenum_output
to be the number of classes in your dataset.
In solver.prototxt set a path forsnapshot_prefix
. Then in a terminal run./build/tools/caffe train -solver ./examples/segnet/solver.prototxt
If you use this software in your research, please cite our publications:
http://arxiv.org/abs/1511.02680Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015.
http://arxiv.org/abs/1511.00561Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015.
This extension to the Caffe library is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here:http://creativecommons.org/licenses/by-nc/4.0/
About
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling
Resources
License
Stars
Watchers
Forks
Packages0
Languages
- C++80.2%
- Python8.2%
- Cuda5.0%
- CMake3.1%
- Protocol Buffer1.5%
- MATLAB1.0%
- Other1.0%