|
| 1 | +/** |
| 2 | + *@param {number} n |
| 3 | + *@return {number} |
| 4 | + */ |
| 5 | +varcountPrimes=function(n){ |
| 6 | +varcount=0; |
| 7 | +for(vari=1;i<n;i++){ |
| 8 | +if(isPrime(i))count++; |
| 9 | +} |
| 10 | +returncount; |
| 11 | +}; |
| 12 | + |
| 13 | +// traditional approach, to determine a number is prime or not, |
| 14 | +// only need to consider factors up to √n |
| 15 | +varisPrime=function(num){ |
| 16 | +if(num<=1)returnfalse; |
| 17 | +// Loop's ending condition is i * i <= num instead of i <= sqrt(num) |
| 18 | +// to avoid repeatedly calling an expensive function sqrt(). |
| 19 | +for(vari=2;i*i<=num;i++){ |
| 20 | +if(num%i==0)returnfalse; |
| 21 | +} |
| 22 | +returntrue; |
| 23 | +}; |
| 24 | + |
| 25 | + |
| 26 | +/** |
| 27 | + * A better solution using Sieve of Eratosthenes |
| 28 | + * if the current number is p, |
| 29 | + * mark off multiples of p starting at p^2, then in increments of p: p^2 + p, p^2 + 2p, ... |
| 30 | + * these above numbers are not prime numbers |
| 31 | + * |
| 32 | + *@param {number} n |
| 33 | + *@return {number} |
| 34 | + */ |
| 35 | +varcountPrimes=function(n){ |
| 36 | +varcount=0; |
| 37 | +varisPrime=[]; |
| 38 | +for(vari=2;i<n;i++)isPrime[i]=true; |
| 39 | +for(vari=2;i*i<n;i++){ |
| 40 | +if(isPrime[i]){ |
| 41 | +varstart=i*i; |
| 42 | +while(start<=n){ |
| 43 | +isPrime[start]=false; |
| 44 | +start=start+i; |
| 45 | +} |
| 46 | +} |
| 47 | +} |
| 48 | +for(varj=2;j<n;j++){ |
| 49 | +if(isPrime[j])count++; |
| 50 | +} |
| 51 | + |
| 52 | +returncount; |
| 53 | +}; |