- Notifications
You must be signed in to change notification settings - Fork39
The Python fake data producer for Apache Kafka® is a complete demo app allowing you to quickly produce JSON fake streaming datasets and push it to an Apache Kafka topic.
License
Aiven-Labs/python-fake-data-producer-for-apache-kafka
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Python Fake Data Producer for Apache Kafka® is a complete demo app allowing you to quickly produce a Python fake Pizza-based streaming dataset and push it to an Apache Kafka® topic. It gives an example on how easy is to create great fake streaming data to feed Apache Kafka.
- Apache Kafka: adistributed streaming platform
- Topic: all Apache Kafka records are organised into topics, you can think of a topic like an event log or a table if you're familiar with databases.
- Apache Kafka Producer: an entity/application that publishes data to Apache Kafka
An Apache Apache Kafka cluster can be created in minutes in any cloud of your choice usingAiven.io console.
For more informations about the code building blogs check theblog post
This demo app is relying onFaker andkafka-python which the former requiring Python 3.5 and above.The installation can be done via
pip install -r requirements.txt
The Python code can be run in bash with the following,inSSL security protocol:
python main.py \ --security-protocol ssl \ --cert-folder~/kafkaCerts/ \ --host kafka-<name>.aivencloud.com \ --port 13041 \ --topic-name pizza-orders \ --nr-messages 0 \ --max-waiting-time 0 \ --subject pizza
inSASL_SSL security protocol:
python main.py \ --security-protocol SASL_SSL \ --sasl-mechanism SCRAM-SHA-256 \ --username<USERNAME> \ --password<PASSWORD> \ --cert-folder~/kafkaCerts/ \ --host kafka-<name>.aivencloud.com \ --port 13041 \ --topic-name pizza-orders \ --nr-messages 0 \ --max-waiting-time 0 \ --subject pizza
inPLAINTEXT security protocol:
python main.py \ --security-protocol plaintext \ --host your-kafka-broker-host \ --port 9092 \ --topic-name pizza-orders \ --nr-messages 0 \ --max-waiting-time 0 \ --subject pizza
Where
security-protocol: Security protocol for Kafka.PLAINTEXT,SSLorSASL_SSLare supported.cert-folder: points to the folder containing the Apache Kafka CA certificate, Access certificate and Access key (seeblog post for more)host: the Apache Kafka hostport: the Apache Kafka porttopic-name: the Apache Kafka topic name to write to (the topic needs to be pre-created orkafka.auto_create_topics_enableparameter enabled)nr-messages: the number of messages to sendmax-waiting-time: the maximum waiting time in seconds between messagessubject: select amongst various subjects:pizzais the default one, but you can generate alsouserbehaviour,bet,stock,realstock(using the yahoo finance apis),metric,advancedmetric, androlling.
If successfully connected to a Apache Kafka cluster, the command will output a number of messages (nr-messages parameter) that are been sent to Apache Kafka in the form
{"id":0,"shop":"Circular Pi Pizzeria","name":"Jason Brown","phoneNumber":"(510)290-7469","address":"2701 Samuel Summit Suite 938\nRyanbury, PA 62847","pizzas": [{"pizzaName":"Diavola","additionalToppings": [] }, {"pizzaName":"Mari & Monti","additionalToppings": ["olives","garlic","anchovies"] }, {"pizzaName":"Diavola","additionalToppings": ["onion","anchovies","mozzarella","olives"] }]}With
id: being the order number, starting from0untilnr-messages -1shop: is the pizza shop name receiving the order, you can check and change the full list of shops in thepizza_shopfunction withinpizzaproducer.pyname: the caller namephoneNumber: the caller phone numberaddress: the caller addresspizzas: an array or pizza orders made bypizzaName: the name of the basic pizza in the range from 1 toMAX_NUMBER_PIZZAS_IN_ORDERdefined inmain.py, the list of available pizzas can be found in thepizza_namefunction withinpizzaproducer.pyadditionalToppings: an optional number of additional toppings added to the pizza in the range from 0 toMAX_ADDITIONAL_TOPPINGS_IN_PIZZA, the list of available toppings can be found in thepizza_toppingfunction withinpizzaproducer.py
If you don't have a Apache Kafka Cluster available, you can easily start one inAiven.io console.
Once created your account you can start your Apache Kafka service withAiven.io's cli
Set your variables first:
KAFKA_INSTANCE_NAME=fafka-myPROJECT_NAME=my-projectCLOUD_REGION=aws-eu-south-1AIVEN_PLAN_NAME=business-4DESTINATION_FOLDER_NAME=~/kafkacertsParameters:
KAFKA_INSTANCE_NAME: the name you want to give to the Apache Kafka instancePROJECT_NAME: the name of the project created during sing-upCLOUD_REGION: the name of the Cloud region where the instance will be created. The list of cloud regions can be foundwith
avn cloud list
AIVEN_PLAN_NAME: name of Aiven's plan to use, which will drive the resources available, the list of plans can be found with
avn service plans --project<PROJECT_NAME> -t kafka --cloud<CLOUD_PROVIDER>
DESTINATION_FOLDER_NAME: local folder where Apache Kafka certificates will be stored (used to login)
You can create the Apache Kafka service with
avn service create \ -t kafka$KAFKA_INSTANCE_NAME \ --project$PROJECT_NAME \ --cloud$CLOUD_PROVIDER \ -p$AIVEN_PLAN_NAME \ -c kafka_rest=true \ -c kafka.auto_create_topics_enable=true \ -c schema_registry=true
You can download the required SSL certificates in the<DESTINATION_FOLDER_NAME> with
avn service user-creds-download$KAFKA_SERVICE_NAME \ --project$PROJECT_NAME \ -d$DESTINATION_FOLDER_NAME \ --username avnadmin
And retrieve the Apache Kafka Service URI with
avn service get$KAFKA_SERVICE_NAME \ --project$PROJECT_NAME \ --format'{service_uri}'
The Apache Kafka Service URI is in the formhostname:port and provides thehostname andport needed to execute the code.You can wait for the newly created Apache Kafka instance to be ready with
avn servicewait$KAFKA_SERVICE_NAME --project$PROJECT_NAME
For a more detailed description of services and required credentials, check theblog post
The demo app produces pizza data, however is very simple to change the dataset produced to anything else.The code is based onFaker, an Open Source Python library to generate fake data.
To modify the data generated, change theproduce_pizza_order function within themain.py file. The output of the function should be two python dictionaries, containing the eventkey andmessage
defproduce_pizza_order (ordercount=1):message= {'name':fake.unique.name(),'phoneNumber':fake.phone_number(),'address':fake.address() }key= {'order'=ordercount}returnmessage,key
To customise your dataset, you can check Faker's providers in therelated doc
Edit:Now with thesubject parameter you can start generating:
- fake
advancedmetricdata, for100000different hostname each having30different CPUs
Sending: {'hostname': 'hostname30692', 'cpu': 'cpu9', 'usage': 76.83123942281046, 'occurred_at': 1675064924126}Sending: {'hostname': 'hostname49005', 'cpu': 'cpu4', 'usage': 76.29121084860914, 'occurred_at': 1675064924126}Sending: {'hostname': 'hostname65485', 'cpu': 'cpu23', 'usage': 98.6179112244911, 'occurred_at': 1675064924126}Sending: {'hostname': 'hostname58818', 'cpu': 'cpu15', 'usage': 87.8367169647086, 'occurred_at': 1675064924126}- fake
metricdata
{'hostname': 'grumpy', 'cpu': 'cpu4', 'usage': 85.2992318980445, 'occurred_at': 1634221377266}{'hostname': 'sleepy', 'cpu': 'cpu1', 'usage': 97.83137121091504, 'occurred_at': 1634221378192}{'hostname': 'sneezy', 'cpu': 'cpu3', 'usage': 85.36598989372837, 'occurred_at': 1634221378395}{'hostname': 'happy', 'cpu': 'cpu4', 'usage': 81.10449127622482, 'occurred_at': 1634221378800}{'hostname': 'dopey', 'cpu': 'cpu2', 'usage': 84.98778951073432, 'occurred_at': 1634221379306}- fake
userbehaviourdata
{'user_id': 8, 'item_id': 25, 'behavior': 'buy', 'view_id': None, 'group_name': 'A', 'occurred_at': '2021-10-14 16:24:57'}{'user_id': 6, 'item_id': 28, 'behavior': 'buy', 'view_id': None, 'group_name': 'B', 'occurred_at': '2021-10-14 16:24:51'}{'user_id': 6, 'item_id': 23, 'behavior': 'cart', 'view_id': None, 'group_name': 'B', 'occurred_at': '2021-10-14 16:24:56'}{'user_id': 9, 'item_id': 26, 'behavior': 'buy', 'view_id': None, 'group_name': 'A', 'occurred_at': '2021-10-14 16:24:52'}{'user_id': 1, 'item_id': 23, 'behavior': 'buy', 'view_id': None, 'group_name': 'B', 'occurred_at': '2021-10-14 16:24:56'}- fake
stockdata
{'stock_name': 'Pita Pan', 'stock_value': 11.311429500055635, 'timestamp': 1634221435718}{'stock_name': 'Deja Brew', 'stock_value': 9.956550461386884, 'timestamp': 1634221435877}{'stock_name': 'Thai Tanic', 'stock_value': 27.227119819515632, 'timestamp': 1634221436180}{'stock_name': 'Lawn & Order', 'stock_value': 20.625166423466904, 'timestamp': 1634221436285}{'stock_name': 'Indiana Jeans', 'stock_value': 24.598295127977412, 'timestamp': 1634221436491}- real
realstockdata (based on yahoo finance apis)
{'stock_name': 'DOGE-USD', 'stock_value': 0.23705412447452545, 'timestamp': 1634221555719}{'stock_name': 'DOGE-USD', 'stock_value': 0.23705412447452545, 'timestamp': 1634221556098}{'stock_name': 'ETH-USD', 'stock_value': 3787.759521484375, 'timestamp': 1634221557011}{'stock_name': 'ETH-USD', 'stock_value': 3787.759521484375, 'timestamp': 1634221557493}{'stock_name': 'ADA-USD', 'stock_value': 2.2166504859924316, 'timestamp': 1634221557971}Apache Kafka is either a registered trademark or trademark of the Apache Software Foundation in the United States and/or other countries. Aiven has no affiliation with and is not endorsed by The Apache Software Foundation.
About
The Python fake data producer for Apache Kafka® is a complete demo app allowing you to quickly produce JSON fake streaming datasets and push it to an Apache Kafka topic.
Topics
Resources
License
Code of conduct
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors5
Uh oh!
There was an error while loading.Please reload this page.