Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A PaddlePaddle version image model zoo.

License

NotificationsYou must be signed in to change notification settings

AgentMaker/Paddle-Image-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub forksGitHub Repo starsPypi DownloadsGitHub release (latest by date including pre-releases)GitHub

English |简体中文

A PaddlePaddle version image model zoo.

Model Zoo
CNNTransformerMLP

Install Package

Usage

Quick Start

importpaddlefromppimimportrednet_26# Load the model with PPIM wheel packagemodel,val_transforms=rednet_26(pretrained=True,return_transforms=True)# Load the model with paddle.hub API# paddlepaddle >= 2.1.0'''model, val_transforms = paddle.hub.load(    'AgentMaker/Paddle-Image-Models:dev',    'rednet_26',    source='github',    force_reload=False,    pretrained=True,    return_transforms=True)'''# Model summarypaddle.summary(model,input_size=(1,3,224,224))# Random a inputx=paddle.randn(shape=(1,3,224,224))# Model forwordout=model(x)

Classification(PaddleHapi)

importpaddleimportpaddle.nnasnnimportpaddle.vision.transformsasTfrompaddle.visionimportCifar100fromppimimportrexnet_1_0# Load the modelmodel,val_transforms=rexnet_1_0(pretrained=True,return_transforms=True,class_dim=100)# Use the PaddleHapi Modelmodel=paddle.Model(model)# Set the optimizeropt=paddle.optimizer.Adam(learning_rate=0.001,parameters=model.parameters())# Set the loss functionloss=nn.CrossEntropyLoss()# Set the evaluate metricmetric=paddle.metric.Accuracy(topk=(1,5))# Prepare the modelmodel.prepare(optimizer=opt,loss=loss,metrics=metric)# Set the data preprocesstrain_transforms=T.Compose([T.Resize(256,interpolation='bicubic'),T.RandomCrop(224),T.ToTensor(),T.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])# Load the Cifar100 datasettrain_dataset=Cifar100(mode='train',transform=train_transforms,backend='pil')val_dataset=Cifar100(mode='test',transform=val_transforms,backend='pil')# Finetune the modelmodel.fit(train_data=train_dataset,eval_data=val_dataset,batch_size=256,epochs=2,eval_freq=1,log_freq=1,save_dir='save_models',save_freq=1,verbose=1,drop_last=False,shuffle=True,num_workers=0)

Contact us

Email :agentmaker@163.com
QQ Group : 1005109853


[8]ページ先頭

©2009-2025 Movatter.jp