- Notifications
You must be signed in to change notification settings - Fork3.1k
FinRL®: Financial Reinforcement Learning. 🔥
License
AI4Finance-Foundation/FinRL
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
FinGPT: Open-source for open-finance! Revolutionize FinTech.
Financial reinforcement learning (FinRL®) (Document website) isthe first open-source framework for financial reinforcement learning. FinRL has evolved into anecosystem
- FinRL-DeepSeek: LLM-Infused Risk-Sensitive Reinforcement Learning for Trading Agents
| Dev Roadmap | Stage | Users | Project | Description |
|---|---|---|---|---|
| 0.0 (Preparation) | entrance | practitioners | FinRL-Meta | gym-style market environments |
| 1.0 (Proof-of-Concept) | full-stack | developers | this repo | automatic pipeline |
| 2.0 (Professional) | profession | experts | ElegantRL | algorithms |
| 3.0 (Production) | service | hedge funds | Podracer | cloud-native deployment |
- Overview
- File Structure
- Supported Data Sources
- Installation
- Status Update
- Tutorials
- Publications
- News
- Citing FinRL
- Join and Contribute
- LICENSE
FinRL has three layers: market environments, agents, and applications. For a trading task (on the top), an agent (in the middle) interacts with a market environment (at the bottom), making sequential decisions.
A quick start: Stock_NeurIPS2018.ipynb. VideosFinRL atAI4Finance Youtube Channel.
The main folderfinrl has three subfoldersapplications, agents, meta. We employ atrain-test-trade pipeline with three files: train.py, test.py, and trade.py.
FinRL├── finrl (main folder)│ ├── applications│ ├── Stock_NeurIPS2018│ ├── imitation_learning│ ├── cryptocurrency_trading│ ├── high_frequency_trading│ ├── portfolio_allocation│ └── stock_trading│ ├── agents│ ├── elegantrl│ ├── rllib│ └── stablebaseline3│ ├── meta│ ├── data_processors│ ├── env_cryptocurrency_trading│ ├── env_portfolio_allocation│ ├── env_stock_trading│ ├── preprocessor│ ├── data_processor.py│ ├── meta_config_tickers.py│ └── meta_config.py│ ├── config.py│ ├── config_tickers.py│ ├── main.py│ ├── plot.py│ ├── train.py│ ├── test.py│ └── trade.py│├── examples├── unit_tests (unit tests to verify codes on env & data)│ ├── environments│ └── test_env_cashpenalty.py│ └── downloaders│ ├── test_yahoodownload.py│ └── test_alpaca_downloader.py├── setup.py├── requirements.txt└── README.md| Data Source | Type | Range and Frequency | Request Limits | Raw Data | Preprocessed Data |
|---|---|---|---|---|---|
| Akshare | CN Securities | 2015-now, 1day | Account-specific | OHLCV | Prices&Indicators |
| Alpaca | US Stocks, ETFs | 2015-now, 1min | Account-specific | OHLCV | Prices&Indicators |
| Baostock | CN Securities | 1990-12-19-now, 5min | Account-specific | OHLCV | Prices&Indicators |
| Binance | Cryptocurrency | API-specific, 1s, 1min | API-specific | Tick-level daily aggegrated trades, OHLCV | Prices&Indicators |
| CCXT | Cryptocurrency | API-specific, 1min | API-specific | OHLCV | Prices&Indicators |
| EODhistoricaldata | US Securities | Frequency-specific, 1min | API-specific | OHLCV | Prices&Indicators |
| IEXCloud | NMS US securities | 1970-now, 1 day | 100 per second per IP | OHLCV | Prices&Indicators |
| JoinQuant | CN Securities | 2005-now, 1min | 3 requests each time | OHLCV | Prices&Indicators |
| QuantConnect | US Securities | 1998-now, 1s | NA | OHLCV | Prices&Indicators |
| RiceQuant | CN Securities | 2005-now, 1ms | Account-specific | OHLCV | Prices&Indicators |
| Sinopac | Taiwan securities | 2023-04-13~now, 1min | Account-specific | OHLCV | Prices&Indicators |
| Tushare | CN Securities, A share | -now, 1 min | Account-specific | OHLCV | Prices&Indicators |
| WRDS | US Securities | 2003-now, 1ms | 5 requests each time | Intraday Trades | Prices&Indicators |
| YahooFinance | US Securities | Frequency-specific, 1min | 2,000/hour | OHLCV | Prices&Indicators |
OHLCV: open, high, low, and close prices; volume. adjusted_close: adjusted close price
Technical indicators: 'macd', 'boll_ub', 'boll_lb', 'rsi_30', 'dx_30', 'close_30_sma', 'close_60_sma'. Users also can add new features.
- Install description for all operating systems (MAC OS, Ubuntu, Windows 10)
- FinRL for Quantitative Finance: Install and Setup Tutorial for Beginners
Version History[click to expand]
- 2022-06-250.3.5: Formal release of FinRL, neo_finrl is chenged to FinRL-Meta with related files in directory:meta.
- 2021-08-250.3.1: pytorch version with a three-layer architecture, apps (financial tasks), drl_agents (drl algorithms), neo_finrl (gym env)
- 2020-12-14Upgraded toPytorch with stable-baselines3; Remove tensorflow 1.0 at this moment, under development to support tensorflow 2.0
- 2020-11-270.1: Beta version with tensorflow 1.5
- [Towardsdatascience]Deep Reinforcement Learning for Automated Stock Trading
| Title | Conference/Journal | Link | Citations | Year |
|---|---|---|---|---|
| Dynamic Datasets and Market Environments for Financial Reinforcement Learning | Machine Learning - Springer Nature | papercode | 7 | 2024 |
| FinRL-Meta: FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning | NeurIPS 2022 | papercode | 37 | 2022 |
| FinRL: Deep reinforcement learning framework to automate trading in quantitative finance | ACM International Conference on AI in Finance (ICAIF) | paper | 49 | 2021 |
| FinRL: A deep reinforcement learning library for automated stock trading in quantitative finance | NeurIPS 2020 Deep RL Workshop | paper | 87 | 2020 |
| Deep reinforcement learning for automated stock trading: An ensemble strategy | ACM International Conference on AI in Finance (ICAIF) | papercode | 154 | 2020 |
| Practical deep reinforcement learning approach for stock trading | NeurIPS 2018 Workshop on Challenges and Opportunities for AI in Financial Services | papercode | 164 | 2018 |
- [央广网]2021 IDEA大会于福田圆满落幕:群英荟萃论道AI 多项目发布亮点纷呈
- [央广网]2021 IDEA大会开启AI思想盛宴 沈向洋理事长发布六大前沿产品
- [IDEA新闻]2021 IDEA大会发布产品FinRL-Meta——基于数据驱动的强化学习金融风险模拟系统
- [知乎]FinRL-Meta基于数据驱动的强化学习金融元宇宙
- [量化投资与机器学习]基于深度强化学习的股票交易策略框架(代码+文档)
- [运筹OR帷幄]领读计划NO.10 | 基于深度增强学习的量化交易机器人:从AlphaGo到FinRL的演变过程
- [深度强化实验室]【重磅推荐】哥大开源“FinRL”: 一个用于量化金融自动交易的深度强化学习库
- [商业新知]金融科技讲座回顾|AI4Finance: 从AlphaGo到FinRL
- [Kaggle]Jane Street Market Prediction
- [矩池云Matpool]在矩池云上如何运行FinRL股票交易策略框架
- [财智无界]金融学会常务理事陈学彬: 深度强化学习在金融资产管理中的应用
- [Neurohive]FinRL: глубокое обучение с подкреплением для трейдинга
- [ICHI.PRO]양적 금융을위한 FinRL: 단일 주식 거래를위한 튜토리얼
- [知乎]基于深度强化学习的金融交易策略(FinRL+Stable baselines3,以道琼斯30股票为例)
- [知乎]动态数据驱动的金融强化学习
- [知乎]FinRL的W&B化+超参数搜索和模型优化(基于Stable Baselines 3)
- [知乎]FinRL-Meta: 未来金融强化学习的元宇宙
@article{dynamic_datasets, author = {Liu, Xiao-Yang and Xia, Ziyi and Yang, Hongyang and Gao, Jiechao and Zha, Daochen and Zhu, Ming and Wang, Christina Dan and Wang, Zhaoran and Guo, Jian}, title = {Dynamic Datasets and Market Environments for Financial Reinforcement Learning}, journal = {Machine Learning - Springer Nature}, year = {2024}}@article{liu2022finrl_meta, title={FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning}, author={Liu, Xiao-Yang and Xia, Ziyi and Rui, Jingyang and Gao, Jiechao and Yang, Hongyang and Zhu, Ming and Wang, Christina Dan and Wang, Zhaoran and Guo, Jian}, journal={NeurIPS}, year={2022}}@article{liu2021finrl, author = {Liu, Xiao-Yang and Yang, Hongyang and Gao, Jiechao and Wang, Christina Dan}, title = {{FinRL}: Deep reinforcement learning framework to automate trading in quantitative finance}, journal = {ACM International Conference on AI in Finance (ICAIF)}, year = {2021}}@article{finrl2020, author = {Liu, Xiao-Yang and Yang, Hongyang and Chen, Qian and Zhang, Runjia and Yang, Liuqing and Xiao, Bowen and Wang, Christina Dan}, title = {{FinRL}: A deep reinforcement learning library for automated stock trading in quantitative finance}, journal = {Deep RL Workshop, NeurIPS 2020}, year = {2020}}@article{liu2018practical, title={Practical deep reinforcement learning approach for stock trading}, author={Liu, Xiao-Yang and Xiong, Zhuoran and Zhong, Shan and Yang, Hongyang and Walid, Anwar}, journal={NeurIPS Workshop on Deep Reinforcement Learning}, year={2018}}We publishedFinRL papers that are listed atGoogle Scholar. Previous papers are given in thelist.
Welcome toAI4Finance community!
Please checkContributing Guidances.
Thank you!
MIT License
Trademark DisclaimerFinRL® is a registered trademark.This license does not grant permission to use the FinRL name, logo, or related trademarkswithout prior written consent, except as permitted by applicable trademark law.For trademark inquiries or permissions, please contact: contact@finrl.aiDisclaimer: We are sharing codes for academic purpose under the MIT education license. Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.
About
FinRL®: Financial Reinforcement Learning. 🔥
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.






