You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/hackrf.rst
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,7 +15,7 @@ The `HackRF One <https://greatscottgadgets.com/hackrf/one/>`_ from Great Scott G
15
15
HackRF Architecture
16
16
********************************
17
17
18
-
The HackRF is based around the Analog Devices MAX2839 chip which is a 2.3GHz to 2.7GHz transceiver initially designed for WiMAX, combined with a MAX5864 RF front-end chip (essentially just the ADC and DAC) and a RFFC5072 wideband synthesizer/VCO (used to upconvert and downconvert the signal in frequency). This is in contract to most other low-cost SDRs which use a single chip known as an RFIC. Aside from setting the frequency generated within the RFFC5072, all of the other parameters we will adjust like the attenuation and analog filtering are going to be in the MAX2839. Instead of using an FPGA or System on Chip (SoC) like many SDRs, the HackRF uses a Complex Programmable Logic Device (CPLD) which acts as simple glue logic, and a microcontroller, the ARM-based LPC4320, which does all of the onboard DSP and interfacing over USB with the host (both transfer of IQ samples in either direction and control of the SDR settings). The following beautiful block diagram from Great Scott Gadgets shows the architecture of the latest revision of the HackRF One:
18
+
The HackRF is based around the Analog Devices MAX2839 chip which is a 2.3GHz to 2.7GHz transceiver initially designed for WiMAX, combined with a MAX5864 RF front-end chip (essentially just the ADC and DAC) and a RFFC5072 wideband synthesizer/VCO (used to upconvert and downconvert the signal in frequency). This is in contrast to most other low-cost SDRs which use a single chip known as an RFIC. Aside from setting the frequency generated within the RFFC5072, all of the other parameters we will adjust like the attenuation and analog filtering are going to be in the MAX2839. Instead of using an FPGA or System on Chip (SoC) like many SDRs, the HackRF uses a Complex Programmable Logic Device (CPLD) which acts as simple glue logic, and a microcontroller, the ARM-based LPC4320, which does all of the onboard DSP and interfacing over USB with the host (both transfer of IQ samples in either direction and control of the SDR settings). The following beautiful block diagram from Great Scott Gadgets shows the architecture of the latest revision of the HackRF One: