Movatterモバイル変換


[0]ホーム

URL:


Skip to contents

Taste Ratings of Japanese Rice Wine (Sake)

Source:R/datasets.R
Sake.Rd

Siotani et al. (1985) describe a study of Japanese rice wine (sake) used toinvestigate the relationship between two subjective ratings (tasteandsmell) and a number of physical measurements on 30 brands ofsake.

Format

A data frame with 30 observations on the following 10 variables.

taste

mean taste rating

smell

mean smell rating

pH

pH measurement

acidity1

one measure of acidity

acidity2

another measure of acidity

sake

Sake-meter score

rsugar

direct reducing sugar content

tsugar

total sugar content

alcohol

alcohol content

nitrogen

formol-nitrogen content

Source

Siotani, M. Hayakawa, T. & Fujikoshi, Y. (1985).ModernMultivariate Statistical Analysis: A Graduate Course and Handbook. AmericanSciences Press, p. 217.

Details

These data provide one example of a case where a multivariate regressiondoesn't benefit from having multiple outcome measures, using the standardtests. Barrett (2003) uses this data to illustrate influence measures formultivariate regression models.

Thetaste andsmell values are the mean ratings of 10 expertson some unknown scale.

References

Barrett, B. E. (2003). Understanding Influence in MultivariateRegression.Communications in Statistics - Theory and Methods 32 (3),667-680.

Examples

data(Sake)# quick look at the databoxplot(scale(Sake))Sake.mod<-lm(cbind(taste,smell)~., data=Sake)library(car)car::Anova(Sake.mod)#>#> Type II MANOVA Tests: Pillai test statistic#>          Df test stat approx F num Df den Df  Pr(>F)#> pH        1  0.276246   3.8169      2     20 0.03944 *#> acidity1  1  0.030788   0.3177      2     20 0.73145#> acidity2  1  0.183297   2.2444      2     20 0.13202#> sake      1  0.141187   1.6440      2     20 0.21827#> rsugar    1  0.178200   2.1684      2     20 0.14050#> tsugar    1  0.054842   0.5802      2     20 0.56891#> alcohol   1  0.075954   0.8220      2     20 0.45387#> nitrogen  1  0.056486   0.5987      2     20 0.55909#> ---#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1predictors<-colnames(Sake)[-(1:2)]# overall multivariate regression testlinearHypothesis(Sake.mod,predictors)#>#> Sum of squares and products for the hypothesis:#>           taste     smell#> taste 1.4171079 0.5786338#> smell 0.5786338 1.4095094#>#> Sum of squares and products for error:#>          taste    smell#> taste 3.172559 2.248366#> smell 2.248366 4.173491#>#> Multivariate Tests:#>                  Df test stat approx F num Df den Df  Pr(>F)#> Pillai            8 0.6300580 1.207279     16     42 0.30236#> Wilks             8 0.4642360 1.169193     16     40 0.33210#> Hotelling-Lawley  8 0.9509599 1.129265     16     38 0.36489#> Roy               8 0.6270207 1.645929      8     21 0.17134heplot(Sake.mod, hypotheses=list("Regr"=predictors))

[8]ページ先頭

©2009-2025 Movatter.jp