Movatterモバイル変換


[0]ホーム

URL:


Aller au contenu
Wikipédial'encyclopédie libre
Rechercher

Métallicité

Un article de Wikipédia, l'encyclopédie libre.
Page d’aide sur l’homonymie

Pour les articles homonymes, voirMétal (homonymie).

Enastrophysique, lamétallicité d'un objet astronomique est la fraction de samasse qui n'est pas constituée d'hydrogène ou d'hélium[1]. La métallicité quantifie l'importance desprocessus nucléosynthétiques dans l'origine de lamatière constituant l'objet considéré (étoile,milieu interstellaire,galaxie,quasar). L'indice de métallicité (souvent appelé simplementmétallicité),[M/H] ou[Fe/H], véhicule sensiblement la même information sous une autre forme.

Le nommétallicité vient du fait qu'en astrophysique on qualifie de métaux (ou d'éléments lourds[2]) tous leséléments chimiques plus « lourds » que l'hélium (les éléments denuméro atomique supérieur à 2). L'intérêt porté à ces éléments vient de ce que, d'une part ils sont peuabondants à l'échelle de l'Univers (un à quelquespour cent en masse, contre 74 % pour l'hydrogène et 23 à 25 % pour l'hélium[note 1]), d'autre part ils ont été formés différemment (nucléosynthèse stellaire).

La métallicité est ordinairement notéeZ. Lesfractions massiques de l'hydrogène et de l'hélium étant notéesX etY, ces trois nombres vérifient la relationX +Y +Z = 1.

Indice de métallicité

[modifier |modifier le code]

Indice [M/H]

[modifier |modifier le code]

Au lieu de la métallicitéZ{\displaystyle Z} on utilise souvent l'indice de métallicité[M/H]{\displaystyle \mathrm {[M/H]} } (souvent dénommé simplementmétallicité), fondé sur une comparaison avec leSoleil :

[M/H]=log10NM/NH(NM/NH){\displaystyle \mathrm {[M/H]} =\log _{10}{\frac {N_{\mathrm {M} }/N_{\mathrm {H} }}{(N_{\mathrm {M} }/N_{\mathrm {H} })_{\odot }}}}

NM/NH{\displaystyle N_{\mathrm {M} }/N_{\mathrm {H} }} désigne le rapport desabondances atomiques des métaux et de l'hydrogène dans l'objet considéré, et(NM/NH){\displaystyle (N_{\mathrm {M} }/N_{\mathrm {H} })_{\odot }} la valeur de ce rapport pour laphotosphère solaire.

Comme lesfractions massiques sont sensiblement proportionnelles auxfractions atomiques et que l'abondance de l'hydrogène varie peu en valeur relative, l'indice de métallicité est relié au rapport des métallicités de l'objet considéré et du Soleil :

[M/H]log10Z/H(Z/H)log10ZZ{\displaystyle \mathrm {[M/H]} \simeq \log _{10}{\frac {Z/H}{(Z/H)_{\odot }}}\simeq \log _{10}{\frac {Z}{Z_{\odot }}}}

La métallicité du Soleil estZ = 0,0134.
Pour mémoire, les fractions massiques de l'hydrogène et de l'hélium dans la photosphère solaire sontX = 0,7381 etY = 0,2485. Un indice [M/H] égal à +1 ou −1 indique une métallicitéZ dix fois supérieure ou dix fois inférieure àZ.

Indice [Fe/H]

[modifier |modifier le code]

Pour les objets peu lumineux on connaît souvent mal l'abondance détaillée des différents éléments chimiques. On se base alors sur certains éléments spécifiques, notamment lefer[note 2] :

[Fe/H]=log10NFe/NH(NFe/NH)log10NFe(NFe){\displaystyle \mathrm {[Fe/H]} =\log _{10}{\frac {N_{\mathrm {Fe} }/N_{\mathrm {H} }}{(N_{\mathrm {Fe} }/N_{\mathrm {H} })_{\odot }}}\simeq \log _{10}{\frac {N_{\mathrm {Fe} }}{(N_{\mathrm {Fe} })_{\odot }}}}

où l'abondance atomique du fer,NFe{\displaystyle N_{\mathrm {Fe} }}, remplace celle de l'ensemble des métaux,NM{\displaystyle N_{\mathrm {M} }}.

Autres indices

[modifier |modifier le code]

Pour discuter plus finement l'importance des différentsprocessus nucléosynthétiques dans l'origine de la matière d'un objet, on fait appel à d'autres indices construits de manière analogue. Pour tout élément X on peut ainsi caractériser son enrichissement (ou appauvrissement) relatif au fer en comparant le rapport de son abondanceNX{\displaystyle N_{\mathrm {X} }} à celle du fer et le même rapport dans laphotosphère solaire :

[X/Fe]=log10NX/NFe(NX/NFe){\displaystyle \mathrm {[X/Fe]} =\log _{10}{\frac {N_{\mathrm {X} }/N_{\mathrm {Fe} }}{(N_{\mathrm {X} }/N_{\mathrm {Fe} })_{\odot }}}}

Par exemple, pour quantifier l'importance relative duprocessus r on peut utiliser l'indice :

[Eu/Fe]=log10NEu/NFe(NEu/NFe){\displaystyle \mathrm {[Eu/Fe]} =\log _{10}{\frac {N_{\mathrm {Eu} }/N_{\mathrm {Fe} }}{(N_{\mathrm {Eu} }/N_{\mathrm {Fe} })_{\odot }}}}

NEu{\displaystyle N_{\mathrm {Eu} }} désigne l'abondance atomique de l'europium[3]. Ainsi il a été observé par exemple que dans lesNuages de Magellan les étoiles ayant une faible métallicité sont néanmoins enrichies en europium via le processus r[4].

Nucléosynthèse et métallicité

[modifier |modifier le code]
Articles détaillés :Nucléosynthèse primordiale etNucléosynthèse stellaire.

La théorie de formation de l'Univers (Big Bang) indique que l'hydrogène et l'hélium sont apparus, avec quelques métaux légers (notamment lelithium), au cours d'un événement appelénucléosynthèse primordiale. Tous les autres éléments ont étésynthétisés par la suite, essentiellement parnucléosynthèse stellaire, et rejetés dans lemilieu interstellaire lors de l'explosion (supernova) par laquelle se termine l'évolution desétoiles de masse initiale supérieure à 9masses solaires. La métallicité de ce milieu a donc augmenté au fil du temps, au fur et à mesure de la formation et de la destruction des étoiles massives.

Laphotosphère d'une étoile hérite de la métallicité du milieu (généralement unnuage moléculaire) à partir duquel elle s'est formée[note 3]. Les étoiles plus anciennes que le Soleil ont ainsi une métallicité moindre, et les étoiles plus récentes une métallicité supérieure. Les étoiles très anciennes (typiquement, d'âge supérieur à 12 Ga), montrent ainsi un indice[Fe/H] inférieur à −2 donc une métallicité inférieure à 1 % de celle du Soleil. On trouve ces étoiles en abondance[note 4] dans lehalo denotre galaxie ainsi que dans sesgalaxies nainessatellites.

La moitié environ des éléments chimiques plus lourds que lefer sont produits par leprocessus r, qui nécessite un environnement très riche enneutrons (de l'ordre de 1020 parcm3). Un tel environnement se trouve dans les supernovas[6], mais aussi pendant lafusion de deux étoiles à neutrons (kilonova). Parmi les étoiles anciennes de très faible métallicité, environ 3 à 5 % sont plus ou moins fortement enrichies en éléments résultant du processus r ([Eu/Fe] > 0,voire > 1). Cet enrichissement est sans doute imputable à des événements de fusion d'étoiles à neutrons, présumés fréquents au tout début de l'évolution des galaxies[7]. Ces événements pourraient en fait être les principaux pourvoyeurs d'éléments issus du processus r, plutôt que les supernovas[3].

Population des étoiles en fonction de leur métallicité

[modifier |modifier le code]

Population I

[modifier |modifier le code]
Article détaillé :Étoile de population I.

Les étoiles riches en métaux sont appeléesétoiles de population I (« Pop I » en abrégé). Ces étoiles sont communes dans les bras desgalaxies spirales comme dansnotre Galaxie ; leSoleil en est un exemple.
La métallicité des Pop I est proche de celle du Soleil par opposition aux Pop II qui elles sont pauvres en métaux, jusqu'à un facteur 1 000 ou plus. L'âge des Pop I s'étale entre 0 et 9 milliards d'années environ.

Population II

[modifier |modifier le code]
Article détaillé :Étoile de population II.
L'amas globulaireM80, constitué principalement d'étoiles de population II.

Les étoiles pauvres en métaux sont appeléesétoiles de population II. Elles se trouvent dans lesamas globulaires et dans le halo des galaxies, sont généralement très anciennes (plus de 8 milliards d'années) et peuvent être présente dans desgalaxies naines comme celle d'Ursa Majora I.

Parmi les étoiles de Population II (duhalo de notre galaxie) les plus connues, citons :

Parmi les étoiles pauvres en métaux on distingue les catégories suivantes :

  • Les étoiles simplement pauvres en métaux (MP pour « Metal Poor ») : -2 ≤ [Fe/H] ≤ -1
  • Les étoiles très pauvres en métaux (VMP pour « Very Metal Poor ») : -3 ≤ [Fe/H] ≤ -2
  • Les étoiles extrêmement pauvres en métaux (EMP pour « Extremely Metal Poor) ») : -4 ≤ [Fe/H] ≤ -3
  • Les étoiles ultra pauvres en métaux (UMP pour « Ultra Metal Poor ») : -5 ≤ [Fe/H] ≤ -4
  • Les étoiles hyper pauvres en métaux (HMP pour « Hyper Metal Poor ») : -6 ≤ [Fe/H] ≤ -5

Les études actuelles ont identifié 10 000 étoiles pauvres en métaux au sein denotre galaxie. Des étoiles jusqu'à une distance supérieure à 15 kpc duSoleil ont pu être analysées, distance en deçà de laquelle la population du halo domine. Les théories de formation de laVoie lactée supposent que la métallicité des étoiles à l'intérieur du halo est supérieure à celle des étoiles se trouvant en dehors.

Sur ces 10 000 étoiles, parmi les plus pauvres en métaux (EMP, UMP et HMP), on trouve une sous-catégorie dite desétoiles enrichies en carbone, dites CEMP (pour « Carbon Enhanced Metal Poor »). Pour ces étoiles, typiquement, on a [C/Fe] = 1[note 5]

Population III

[modifier |modifier le code]
Article détaillé :Étoile de population III.
Simulation d'étoiles de population III, 400 millions d'années après leBig Bang.

Actuellement, on recherche toujours desétoiles de population III qui ne seraient composées que d'hydrogène et d'hélium, trahissant ainsi la première formation après leBig Bang. Ces étoiles ont comme particularité d'avoir une métallicité nulle (Z=0, [M/H]=-∞), et possèdent donc un spectre dans lequel seules les raies d'absorption de l'hydrogène et de l'hélium seraient visibles, à l'exclusion de toutes les autres.

Pour le moment, l'étoile la plus déficiente en métaux connue à ce jour (au) contient environ 200 000 fois moins de « métaux » que leSoleil. Aucune étoile de métallicitézéro n'a été trouvée en date de2008. Il est probable que ces étoiles furent très massives et donc évoluèrent très rapidement pour disparaître très tôt dans la vie de l'Univers. Les étoiles de population II que nous observons aujourd'hui, témoins d'un passé lointain, ont toutes une masse inférieure à celle du Soleil ce qui leur garantit une durée de vie minimale de l'ordre de l'âge de l'Univers.

Notes et références

[modifier |modifier le code]

Notes

[modifier |modifier le code]
  1. La disproportion est encore plus forte en termes defraction atomique : moins de 1 % de métaux, contre 92 % d'hydrogène et 8 % d'hélium.
  2. Comme [M/H], l'indice [Fe/H] est souvent dénommé simplementmétallicité.
  3. La photosphère d'une étoile n'est pas assez chaude pour que s'y déroulent des processus defusion nucléaire. Elle n'est donc pas affectée par la nucléosynthèse en cours dans les couches plus profondes de l'étoile.
  4. On en connaît plusieurs dizaines de milliers[5].
  5. Ce qui signifie que le rapport entre le nombre d'atomes de carbone et de fer dans ces étoiles a une valeur 10 fois plus grande que ce même rapport mesuré dans le Soleil.

Références

[modifier |modifier le code]
  1. (en) Daniel Kunth et Göran Östlin, « The Most Metal-poor Galaxies »,The Astronomy and Astrophysics Review,vol. 10,nos 1-2,‎(DOI 10.1007/s001590000005,lire en ligne).
  2. (en) « heavy element » [« élément lourd »][php], dansMohammadHeydari-Malayeri,An Etymological Dictionary of Astronomy and Astrophysics: English-French-Persian [« Un dictionnaire étymologique d'astronomie et d'astrophysique : anglais-français-persan »], Paris,Observatoire de Paris, 2005-2015, php(lire en ligne).
  3. a etb(en) Anna Frebel et Timothy C. Beers, « The formation of the heaviest elements »,Physics Today,vol. 71,no 1,‎,p. 30-37(DOI 10.1063/PT.3.3815).
  4. (en) Henrique Reggiani, Kevin C. Schlaufman1 et Andrew R. Casey, « The Most Metal-poor Stars in the Magellanic Clouds Are r-process Enhanced »,The Astronomical Journal,vol. 162,no 6,‎(DOI 10.3847/1538-3881/ac1f9a,lire en ligne).
  5. (en) Anna Frebel et John E. Norris, « Near-Field Cosmology with Extremely Metal-Poor Stars »,Annual Review of Astronomy and Astrophysics,vol. 53,‎,p. 631-688(DOI 10.1146/annurev-astro-082214-122423).
  6. (en) John Cowan et Friedrich-Karl Thielemann, « R-Process Nucleosynthesis in Supernovae »,Physics Today,vol. 57,no 10,‎,p. 47-54(DOI 10.1063/1.1825268).
  7. (en) S. E. de Mink et K. Belczynski, « Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions »,The Astrophysical Journal,vol. 814,no 1,‎(DOI 10.1088/0004-637X/814/1/58).
  8. (en) AnnaFrebel, NorbertChristlieb, John E.Norris, ChristopherThom, Timothy C.Beers et JaehyonRhee, « Discovery of HE 1523–0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium »,The Astrophysical Journal Letters,vol. 660,no 2,‎(DOI 10.1086/518122,résumé)

Voir aussi

[modifier |modifier le code]

Sur les autres projets Wikimedia :

Articles connexes

[modifier |modifier le code]

Liens externes

[modifier |modifier le code]
v ·m
Classes de luminosité ettypes spectraux
Types
Binaires
Variables
Multiples
Compositions
Objets compacts
Hypothétiques
Classifications
Catalogues
Listes
Formation
(pré-séquence principale)
Nébuleuses
(post-séquence principale)
Physique stellaire
Soleil
Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Métallicité&oldid=225198434 ».
Catégories :
Catégories cachées :

[8]ページ先頭

©2009-2025 Movatter.jp