Property | Value |
---|
dbo:abstract | - En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et aussi le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f. En étendant cette notion, la construction de l'intégrale de Lebesgue s’applique à un ensemble plus riche de fonctions définies sur des espaces plus généraux que ou . (fr)
- En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et aussi le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f. En étendant cette notion, la construction de l'intégrale de Lebesgue s’applique à un ensemble plus riche de fonctions définies sur des espaces plus généraux que ou . (fr)
|
dbo:namedAfter | |
dbo:wikiPageExternalLink | |
dbo:wikiPageID | |
dbo:wikiPageLength | - 17699 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID | |
dbo:wikiPageWikiLink | |
prop-fr:année | - 1904 (xsd:integer)
- 1937 (xsd:integer)
- 1950 (xsd:integer)
- 1953 (xsd:integer)
- 1966 (xsd:integer)
- 1972 (xsd:integer)
- 1976 (xsd:integer)
- 1977 (xsd:integer)
- 1988 (xsd:integer)
- 1989 (xsd:integer)
- 1995 (xsd:integer)
- 1999 (xsd:integer)
|
prop-fr:auteur | |
prop-fr:collection | - http://matwbn.icm.edu.pl/ksspis.php%3Fwyd=10&jez=pl
- Pure and Applied Mathematics (fr)
- Wiley Classics Library (fr)
- Dover Books on Advanced Mathematics (fr)
- The Wadsworth & Brooks/Cole Mathematics Series (fr)
- International Series in Pure and Applied Mathematics (fr)
|
prop-fr:isbn | |
prop-fr:langue | |
prop-fr:langueOriginale | |
prop-fr:lienAuteur | - Paul Halmos (fr)
- Nicolas Bourbaki (fr)
- Henri Lebesgue (fr)
- Boris Lazarevich Gurevich (fr)
- Marshall Evans Munroe (fr)
- Paul Halmos (fr)
- Nicolas Bourbaki (fr)
- Henri Lebesgue (fr)
- Boris Lazarevich Gurevich (fr)
- Marshall Evans Munroe (fr)
|
prop-fr:lieu | - Genève (fr)
- New York (fr)
- Paris (fr)
- Cambridge, Mass. (fr)
- New York, N. Y. (fr)
- Pacific Grove, CA (fr)
- Toronto-New York-London (fr)
- Varsovie-Lviv (fr)
- Genève (fr)
- New York (fr)
- Paris (fr)
- Cambridge, Mass. (fr)
- New York, N. Y. (fr)
- Pacific Grove, CA (fr)
- Toronto-New York-London (fr)
- Varsovie-Lviv (fr)
|
prop-fr:lireEnLigne | |
prop-fr:mr | - 33869 (xsd:integer)
- 53186 (xsd:integer)
- 54173 (xsd:integer)
- 210528 (xsd:integer)
- 385023 (xsd:integer)
- 389523 (xsd:integer)
- 466463 (xsd:integer)
- 982264 (xsd:integer)
- 1013117 (xsd:integer)
- 1312157 (xsd:integer)
- 1681462 (xsd:integer)
- 2018901 (xsd:integer)
|
prop-fr:nom | - Bourbaki (fr)
- Lebesgue (fr)
- Royden (fr)
- Halmos (fr)
- Gurevich (fr)
- Rudin (fr)
- Munroe (fr)
- Bourbaki (fr)
- Lebesgue (fr)
- Royden (fr)
- Halmos (fr)
- Gurevich (fr)
- Rudin (fr)
- Munroe (fr)
|
prop-fr:numéroChapitre | |
prop-fr:numéroD'édition | - 2 (xsd:integer)
- 3 (xsd:integer)
|
prop-fr:pagesTotales | - 405 (xsd:integer)
- xi+304 (fr)
- VI+347 (fr)
- x+190 (fr)
- x+310 (fr)
- x+342 (fr)
- xi+412 (fr)
- xii+179 (fr)
- xii+436 (fr)
- xiv+233 (fr)
- xvi+386 (fr)
- xvi+472 (fr)
- xx+444 (fr)
|
prop-fr:prénom | - Henri (fr)
- N. (fr)
- Paul R. (fr)
- H. L. (fr)
- Walter (fr)
- B. L. (fr)
- M. E. (fr)
- Henri (fr)
- N. (fr)
- Paul R. (fr)
- H. L. (fr)
- Walter (fr)
- B. L. (fr)
- M. E. (fr)
|
prop-fr:titre | - dbpedia-fr:Éléments_de_mathématique
- Principles of Mathematical Analysis (fr)
- Measure Theory (fr)
- Integral, Measure and Derivative: A Unified Approach (fr)
- An Introduction to Abstract Harmonic Analysis (fr)
- Introduction to Measure and Integration (fr)
- Real Analysis (fr)
- Real Analysis and Probability (fr)
- Real and Complex Analysis (fr)
- The Elements of Integration and Lebesgue Measure (fr)
- Theory of the Integral (fr)
- Œuvres scientifiques (fr)
- Real Analysis: Modern Techniques and Their Applications (fr)
- Leçons sur l'intégration et la recherche des fonctions primitives (fr)
|
prop-fr:titreVolume | - Intégration (fr)
- Intégration (fr)
|
prop-fr:traducteur | - , with two additional notes by Stefan Banach (fr)
- Richard A. Silverman (fr)
- , with two additional notes by Stefan Banach (fr)
- Richard A. Silverman (fr)
|
prop-fr:volume | |
prop-fr:wikiPageUsesTemplate | |
prop-fr:wikisource | - Sur une généralisation de l’intégrale définie (fr)
- Sur une généralisation de l’intégrale définie (fr)
|
prop-fr:wikiversity | - Intégrale de Lebesgue (fr)
- Intégrale de Lebesgue (fr)
|
prop-fr:éditeur | |
dct:subject | |
rdfs:comment | - En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et aussi le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. (fr)
- En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et aussi le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. (fr)
|
rdfs:label | - Intégrale de Lebesgue (fr)
- Całka Lebesgue’a (pl)
- Integrale di Lebesgue (it)
- Lebesgue-Integral (de)
- Lebesgueintegration (sv)
- Интеграл Лебега (ru)
- ルベーグ積分 (ja)
- Intégrale de Lebesgue (fr)
- Całka Lebesgue’a (pl)
- Integrale di Lebesgue (it)
- Lebesgue-Integral (de)
- Lebesgueintegration (sv)
- Интеграл Лебега (ru)
- ルベーグ積分 (ja)
|
rdfs:seeAlso | |
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
isdbo:knownFor of | |
isdbo:wikiPageDisambiguates of | |
isdbo:wikiPageRedirects of | |
isdbo:wikiPageWikiLink of | |
isprop-fr:renomméPour of | |
isoa:hasTarget of | |
isfoaf:primaryTopic of | |