This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages) (Learn how and when to remove this message)
|
Azone valve is a specific type ofvalve used to control the flow ofwater orsteam in ahydronic heating or cooling system.
In the interest of improving efficiency and occupant comfort, such systems are commonly divided up into multiple zones.[1] For example, in a house, the main floor may be served by one heating zone while the upstairs bedrooms are served by another. In this way, the heat can be directed principally to the main floor during the day and principally to the bedrooms at night, allowing the unoccupied areas to cool down.
This zoning can be accomplished in one of two ways:
Zone valves as used in home hydronic systems are usually electrically powered. In large commercial installations,vacuum orcompressed air may be used instead. In either case, the motor is usually connected to the water valve via a mechanical coupling.
For electrical zone valves, the motor is often a smallshaded-pole synchronous motor combined with a rotary switch that can disconnect the motor at either of the two stopping points ("valve open" or "valve closed"). In this way, applying power to the "open valve" terminal causes the motor to run until the valve is open while applying power at the "close valve" terminal causes the motor to run until the valve is closed. The motor is commonly powered from the same 24voltac power source that is used for the rest of the control system. This allows the zone valves to be directly controlled by low-voltagethermostats and wired with low-voltage wiring. This style of valve requires the use of anSPDT thermostat orrelay.
A simpler variant of the motorized design omits the switch that detects the valve position. The motor is simply driven until the valve hits a mechanical stop, whichstalls the motor. In an alternative design, the motor continues to turn, while aslip clutch allows the valve to be pushed against a mechanical stop. Usually, the valve remains open as long as power is supplied, and a strong spring closes it when power is cut. This simpler design consumes electrical power whenever the valve is open. There is no feedback to verify the state of the valve, which is assumed to do what has been commanded.
Zone valves can also be constructed usingwax motors and a spring-return mechanism. In this case, the valve is normally closed by the force of the spring but can be opened by the force of the wax motor. Removal of electrical power re-closes the valve. This style of zone valve operates with a perfectly ordinarySPST thermostat.
For vacuum- or pneumatically operated zone valves, the thermostat usually switches the pressure or vacuum on or off, causing aspring-loaded rubber diaphragm orball valve to move and actuate the valve.[2] Unlike the switch-monitored electrical zone valves, these valves automatically return to the default position without the application of any power, and the default position is usually "open", allowing heat to flow.
Highly sophisticated systems may use some form ofbuilding automation such asBACnet orLonWorks to control the zone valves.
Multiple zones can be implemented using either multiple, individually controlled circulator pumps or a single pump and multiple zone valves. Each approach has advantages and disadvantages.
Advantages:
Disadvantages:
Advantages:
Disadvantages: