Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Zircon

From Wikipedia, the free encyclopedia
Zirconium silicate mineral
This article is about the mineral and gemstone. For other uses, seeZircon (disambiguation).

Zircon
A lustrous crystal of zircon perched on a tan matrix of calcite from theGilgit District ofPakistan
General
CategoryNesosilicates
Formulazirconium silicate (ZrSiO4)
IMA symbolZrn[1]
Strunz classification9.AD.30
Crystal systemTetragonal
Crystal classDitetragonal dipyramidal (4/mmm)
H-M symbol: (4/m 2/m 2/m)
Space groupI41/amd (No. 141)
Unit cella = 6.607(1), c = 5.982(1) [Å]; Z = 4
Identification
ColorReddish brown, yellow, green, blue, gray, colorless; in thin section, colorless to pale brown
Crystal habittabular to prismatic crystals, irregular grains, massive
TwinningOn {101}. Crystals shocked by meteorite impact show polysynthetic twins on {112}
Cleavage{110} and {111}
FractureConchoidal to uneven
TenacityBrittle
Mohs scale hardness7.5
LusterVitreous to adamantine; greasy whenmetamict.
StreakWhite
DiaphaneityTransparent to opaque
Specific gravity4.6–4.7
Optical propertiesUniaxial (+)
Refractive indexnω = 1.925–1.961
nε = 1.980–2.015, 1.75 when metamict
Birefringenceδ = 0.047–0.055
PleochroismWeak
Fusibilityclose to 2,550 °C depend on Hf,Th,U,H,etc... concentrations.
SolubilityInsoluble
Other characteristicsFluorescent andradioactive,
May formpleochroic halos,
Relief: high
References[2][3][4][5][6]

Zircon (/ˈzɜːrkɒn,-kən/)[7][8][9] is amineral belonging to the group ofnesosilicates and is a source of the metalzirconium. Its chemical name iszirconium(IV) silicate, and its corresponding chemical formula isZrSiO4. Anempirical formula showing some of the range of substitution in zircon is (Zr1–y,REEy)(SiO4)1–x(OH)4x–y. Zircon precipitates fromsilicatemelts and has relatively high concentrations ofhigh field strength incompatible elements. For example,hafnium is almost always present in quantities ranging from 1 to 4%. Thecrystal structure of zircon istetragonalcrystal system. The natural color of zircon varies between colorless, yellow-golden, red, brown, blue, and green.[10]

The name derives from thePersianzargun, meaning "gold-hued".[11] This word is changed into "jargoon", a term applied to light-colored zircons. The English word "zircon" is derived fromZirkon, which is the German adaptation of this word.[12] Yellow, orange, and red zircon is also known as "hyacinth",[13] from the flowerhyacinthus, whose name is ofAncient Greek origin.

Properties

[edit]
Optical microscope photograph; the length of the crystal is about 250μm

Zircon is common in thecrust of Earth. It occurs as a commonaccessory mineral inigneous rocks (as primary crystallization products), inmetamorphic rocks and as detrital grains insedimentary rocks.[2] Large zircon crystals are rare. Their average size ingranite rocks is about 0.1–0.3 mm (0.0039–0.0118 in), but they can also grow to sizes of several cm, especially inmaficpegmatites andcarbonatites.[2] Zircon is fairly hard (with a Mohs hardness of 7.5) and chemically stable, and so is highly resistant to weathering. It also is resistant to heat, so that detrital zircon grains are sometimes preserved in igneous rocks formed from melted sediments.[14] Its resistance to weathering, together with its relatively high specific gravity (4.68), make it an important component of the heavy mineral fraction of sandstones.[5]

Because of theiruranium[15] andthorium content, some zircons undergometamictization. Connected to internal radiation damage, these processes partially disrupt the crystal structure and partly explain the highly variable properties of zircon. As zircon becomes more and more modified by internal radiation damage, the density decreases, the crystal structure is compromised, and the color changes.[16]

Zircon occurs in many colors, including reddish brown, yellow, green, blue, gray, and colorless.[2] The color of zircons can sometimes be changed by heat treatment. Common brown zircons can be transformed into colorless and blue zircons by heating to 800 to 1,000 °C (1,470 to 1,830 °F).[17] In geological settings, the development of pink, red, and purple zircon occurs after hundreds of millions of years, if the crystal has sufficient trace elements to producecolor centers. Color in this red or pink series is annealed in geological conditions above temperatures of around 400 °C (752 °F).[18]

Structurally, zircon consists of parallel chains of alternating silica tetrahedra (silicon ions in fourfold coordination with oxygen ions) and zirconium ions, with the large zirconium ions in eightfold coordination with oxygen ions.[19]

Applications

[edit]
Sand-sized grains of zircon

Zircon is mainly consumed as anopacifier, and has been known to be used in the decorative ceramics industry.[20] It is also the principal precursor not only to metalliczirconium, although this application is small, but also to all compounds of zirconium includingzirconium dioxide (ZrO2), an importantrefractory oxide with a melting point of 2,717 °C (4,923 °F).[21]

Other applications include use in refractories and foundry casting and a growing array of specialty applications aszirconia and zirconium chemicals, including in nuclear fuel rods, catalytic fuel converters and in water and air purification systems.[22]

Ford Motor Company used a sand casting method known as theCosworth Casting Method for the cylinder heads of itsDuratec V6 engine. The process, developed by noted scientistJohn Campbell used zircon as its casting aggregate to improve material uniformity and create dimensional accuracy, high strength, and a dense, low- or no-porosity structure.[23][24]

Zircon is one of the key mineralsused by geologists forgeochronology.[25]

Zircon is a part of theZTR index to classify highly-weatheredsediments.[26]

Gemstone

[edit]
A pale blue zircon gemstone weighing 3.36 carats
This bracelet has zircon gemstones. The metal is zinc alloy base with silver coating.

Transparent zircon is a well-known form of semi-preciousgemstone, favored for its highspecific gravity (between 4.2 and 4.86) and adamantineluster. Because of its highrefractive index (1.92) it has sometimes been used as a substitute fordiamond, though it does not display quite the sameplay of color as a diamond. Zircon is one of the heaviest types of gemstone.[27] ItsMohs hardness is between that of quartz and topaz, at 7.5 on the 10 point scale, though below that of the similar manmade stonecubic zirconia (8-8.5). Zircons may sometimes lose their inherent color after long exposure to bright sunlight, which is unusual in a gemstone. It is immune to acid attack except bysulfuric acid and then only when ground into a fine powder.[28]

Most gem-grade zircons show a high degree ofbirefringence which, on stones cut with a table and pavilion cuts (i.e., nearly all cut stones), can be seen as the apparent doubling-up of the latter when viewed through the former, and this characteristic can be used to distinguish them from diamonds and cubic zirconias (CZ) as well as soda-lime glass, none of which show this characteristic. However, some zircons from Sri Lanka display only weak or no birefringence at all, and some other Sri Lanka stones may show clear birefringence in one place and little or none in another part of the same cut stone.[29] Other gemstones also display birefringence, so while the presence of this characteristic may help distinguish a given zircon from a diamond or a CZ, it will not help distinguish it from, for example, atopaz gemstone. The high specific gravity of zircon, however, can usually separate it from any other gem and is simple to test.

Also, birefringence depends on the cut of the stone in relation to itsoptical axis. If a zircon is cut with this axis perpendicular to its table, birefringence may be reduced to undetectable levels unless viewed with a jeweler'sloupe or other magnifying optics. The highest grade zircons are cut to minimize birefringence.[30]

The value of a zircon gem depends largely on its color, clarity, and size. Prior to World War II, blue zircons (the most valuable color) were available from many gemstone suppliers in sizes between 15 and 25 carats; since then, stones even as large as 10 carats have become very scarce, especially in the most desirable color varieties.[30]

Synthetic zircons have been created in laboratories.[31] They are occasionally used in jewellery such as earrings. Zircons are sometimes imitated byspinel and syntheticsapphire, but are not difficult to distinguish from them with simple tools.

Zircon fromRatanakiri province in Cambodia is heat treated to produce blue zircon gemstones, sometimes referred to by the trade namecambolite.[32]

Occurrence

[edit]
World production trend of zirconium mineral concentrates

Zircon is a common accessory to trace mineral constituent of all kinds of igneous rocks, but particularlygranite andfelsic igneous rocks. Due to its hardness, durability and chemical inertness, zircon persists in sedimentary deposits and is a common constituent of most sands.[33][34] Zircon can occasionally be found as a trace mineral inultrapotassic igneous rocks such askimberlites, carbonatites, and lamprophyre, owing to the unusual magma genesis of these rocks.[35][36]

Zircon forms economic concentrations withinheavy mineral sands ore deposits, within certainpegmatites, and within some rare alkaline volcanic rocks (for example the Toongi Trachyte inDubbo, Australia)[37] in association with the zirconium-hafnium mineralseudialyte and armstrongite.

Australia leads the world in zircon mining, producing 37% of the world total and accounting for 40% of world EDR (economic demonstrated resources) for the mineral.[38] South Africa is Africa's main producer, with 30% of world production, second after Australia.[39]

Radiometric dating

[edit]
SEM-CL image of Zircon grain showing zonations and poly-cycles (core-rim structure)

Zircon has played an important role during the evolution ofradiometric dating. Zircons contain trace amounts ofuranium andthorium (from 10ppm up to 1 wt%)[15] and can be dated using several modern analytical techniques. Because zircons can survive geologic processes likeerosion, transport, and even high-grademetamorphism, they contain a rich and varied record of geological processes. Currently, zircons are typically dated byuranium–lead (U–Pb),fission-track, and U+Th/He techniques. Imaging the cathodoluminescence emission from fast electrons can be used as a prescreening tool for high-resolutionsecondary-ion mass spectrometry (SIMS) to image the zonation pattern and identify regions of interest for isotope analysis. This is done using an integrated cathodoluminescence and scanning electron microscope.[40]Zircons in sedimentary rock can identify the sediment source.[41]

Zircons fromJack Hills in theNarryer Gneiss terrane,Yilgarn craton,Western Australia, have yieldedU–Pb ages up to 4.404 billion years,[42] interpreted to be the age of crystallization, making them theoldest minerals so far dated on Earth. In addition, theoxygenisotopic compositions of some of these zircons have been interpreted to indicate that more than 4.3 billion years ago there was already liquid water on the surface of the Earth.[42][43][44][45] This interpretation is supported by additional trace element data,[46][47] but is also the subject of debate.[48][49][50] In 2015, "remains ofbiotic life" were found in 4.1-billion-year-old rocks in the Jack Hills of Western Australia.[51][52] According to one of the researchers, "Iflife arose relatively quickly onEarth ... then it could be common in theuniverse."[51]

Similar minerals

[edit]

Hafnon (HfSiO4),xenotime (YPO4),béhierite,schiavinatoite ((Ta,Nb)BO4),thorite (ThSiO4), andcoffinite (USiO4)[15] all share the same crystal structure (IVXIVY O4,IIIXVY O4 in the case of xenotime) as zircon.

Gallery

[edit]
  • Crystal structure of zircon
    Crystal structure of zircon
  • Unit cell of zircon
    Unit cell of zircon
  • Scanning electron microscope image of zircon
  • Unusual olive-green zircon
    Unusual olive-green zircon
  • Cluster of three compound crystals of zircon
    Cluster of three compound crystals of zircon

See also

[edit]

References

[edit]
  1. ^Warr, L.N. (2021)."IMA–CNMNC approved mineral symbols".Mineralogical Magazine.85 (3):291–320.Bibcode:2021MinM...85..291W.doi:10.1180/mgm.2021.43.S2CID 235729616.
  2. ^abcdAnthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (1995)."Zircon"(PDF).Handbook of Mineralogy. Vol. II (Silica, Silicates). Chantilly, VA, US:Mineralogical Society of America.ISBN 978-0962209710.
  3. ^"Zircon: Mineral information, data and localities".Mindat.org. RetrievedOctober 19, 2021.
  4. ^"Zircon Mineral Data".Webmineral. RetrievedOctober 19, 2021.
  5. ^abHurlbut, Cornelius S.; Klein, Cornelis (1985).Manual of Mineralogy (20th ed.). Wiley.ISBN 0-471-80580-7.
  6. ^Erickson, Timmons M.; Cavosie, Aaron J.; Moser, Desmond E.; et al. (2013)."Correlating planar microstructures in shocked zircon from the Vredefort Dome at multiple scales: Crystallographic modeling, external and internal imaging, and EBSD structural analysis"(PDF).American Mineralogist.98 (1). Abstract:53–65.Bibcode:2013AmMin..98...53E.doi:10.2138/am.2013.4165.S2CID 67779734.
  7. ^"zircon".Collins English Dictionary.HarperCollins. RetrievedApril 29, 2018.
  8. ^"zircon".The American Heritage Dictionary of the English Language (5th ed.). HarperCollins.
  9. ^"zircon".Merriam-Webster.com Dictionary. Merriam-Webster. RetrievedApril 29, 2018.
  10. ^"Materials Explorer".
  11. ^Stwertka, Albert (1996).A Guide to the Elements. Oxford University Press. pp. 117–119.ISBN 978-0-19-508083-4.
  12. ^Harper, Douglas."zircon".Online Etymology Dictionary.
  13. ^"Hyacinth (gem)".Encyclopædia Britannica. Encyclopædia Britannica Inc. RetrievedOctober 7, 2016.
  14. ^Nesse, William D. (2000).Introduction to mineralogy. New York: Oxford University Press. pp. 313–314.ISBN 9780195106916.
  15. ^abcJackson, Robert A.; Montenari, Michael (2019)."Computer modeling of Zircon (ZrSiO4)—Coffinite (USiO4) solid solutions and lead incorporation: Geological implications".Stratigraphy & Timescales.4:217–227.doi:10.1016/bs.sats.2019.08.005.ISBN 9780128175521.S2CID 210256739 – via Elsevier Science Direct.
  16. ^Nesse 2000, pp. 93–94.
  17. ^"Zircon gemstone information".www.gemdat.org. RetrievedApril 29, 2018.
  18. ^Garver, John I.; Kamp, Peter J.J. (2002). "Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand".Tectonophysics.349 (1–4):203–219.Bibcode:2002Tectp.349..203G.CiteSeerX 10.1.1.570.3912.doi:10.1016/S0040-1951(02)00054-9.
  19. ^Nesse 2000, p. 313.
  20. ^Nielsen, Ralph (2000). "Zirconium and Zirconium Compounds".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a28_543.ISBN 978-3527306732.
  21. ^Davis, Sergio; Belonoshko, Anatoly; Rosengren, Anders; Duin, Adri; Johansson, Börje (January 1, 2010)."Molecular dynamics simulation of zirconia melting".Open Physics.8 (5): 789.Bibcode:2010CEJPh...8..789D.doi:10.2478/s11534-009-0152-3.S2CID 120967147.
  22. ^"Products".Mineral Commodities Ltd. Archived fromthe original on October 7, 2016. RetrievedAugust 8, 2016.
  23. ^Paul Wager (October 18, 2023)."Jaguar AJ-V6 engine tech guide". Prestige and Performance Car.
  24. ^"Cosworth sand casting process". Giesserei Lexikon.
  25. ^Nesse 2000, p. 314.
  26. ^Blatt, Harvey; Middleton, Gerard; Murray, Raymond (1980).Origin of sedimentary rocks (2d ed.). Englewood Cliffs, N.J.: Prentice-Hall. pp. 321–322.ISBN 0136427103.
  27. ^Brauns, Reinhard (1912).The Mineral Kingdom (Volume 1). Translated by Leonard James Spencer. J.F. Schreiber. p. 217.
  28. ^Oliver Cummings Farrington (1903).Gems and Gem Minerals. A.W. Mumford. p. 109.
  29. ^L.J. Spencer (1905).Report of the Seventy-Fourth Meeting of the British Association for the Advancement of Science. John Murray. pp. 562–563.
  30. ^ab"Physical & Optical Properties of Zircon".Colored Gemstones Guide. RetrievedOctober 19, 2021.
  31. ^Van Westrenen, Wim; Frank, Mark R.; Hanchar, John M.; Fei, Yingwei; Finch, Robert J.; Zha, Chang-Sheng (January 2004). "In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition".American Mineralogist.89 (1):197–203.Bibcode:2004AmMin..89..197V.doi:10.2138/am-2004-0123.S2CID 102001496.
  32. ^""Blue Zircon Cambolite"".
  33. ^Nesse 2000, pp. 313–314.
  34. ^Hurlbut & Klein 1985, p. 454.
  35. ^Shumlyanskyy, Leonid V.; Kamenetsky, Vadim S.; Tsymbal, Stepan M.; Wilde, Simon A.; Nemchin, Alexander A.; Ernst, Richard E.; Shumlianska, Liudmyla O. (December 15, 2021)."Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts".Lithos.406–407 106528.Bibcode:2021Litho.40606528S.doi:10.1016/j.lithos.2021.106528.ISSN 0024-4937.
  36. ^Zaccaria, Daria; Vicentini, Noemi; Perna, Maria Grazia; Rosatelli, Gianluigi; Sharygin, Victor V.; Humphreys-Williams, Emma; Brownscombe, Will; Stoppa, Francesco (September 30, 2021)."Lamprophyre as the Source of Zircon in the Veneto Region, Italy".Minerals.11 (10): 1081.Bibcode:2021Mine...11.1081Z.doi:10.3390/min11101081.ISSN 2075-163X.
  37. ^Staff (June 2007)."Dubbo Zirconia Project Fact Sheet June 2014"(PDF).Alkane Resources Limited. Archived fromthe original(PDF) on February 28, 2008. RetrievedSeptember 10, 2007.
  38. ^"The Mineral Sands Industry Factbook"(PDF). Archived fromthe original(PDF) on August 18, 2016.
  39. ^"Heavy Minerals Mining in Africa – Titanium And Zirconium". Archived fromthe original on May 28, 2008. RetrievedAugust 8, 2016.
  40. ^"Zircons – Application Note".DELMIC. RetrievedFebruary 10, 2017.
  41. ^Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. (October 2012)."Detrital zircon record and tectonic setting".Geology.40 (10):875–878.Bibcode:2012Geo....40..875C.doi:10.1130/G32945.1.hdl:10023/3575.
  42. ^abWilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago".Nature.409 (6817):175–178.Bibcode:2001Natur.409..175W.doi:10.1038/35051550.PMID 11196637.S2CID 4319774.
  43. ^Mojzsis, Stephen J.; Harrison, T. Mark; Pidgeon, Robert T. (2001). "Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago".Nature.409 (6817):178–181.Bibcode:2001Natur.409..178M.doi:10.1038/35051557.PMID 11196638.S2CID 2819082.
  44. ^Valley, JW; Peck, WH; King, EM; Wilde, SA (2002). "A cool early Earth".Geology.30 (4):351–354.Bibcode:2002Geo....30..351V.doi:10.1130/0091-7613(2002)030<0351:ACEE>2.0.CO;2.
  45. ^Valley, JW; Lackey, JS; Cavosie, AJ (2005). "4.4 billion years of crustal maturation: Oxygen isotopes in magmatic zircon".Contributions to Mineralogy and Petrology.150:561–580.doi:10.1007/s00410-005-0025-8.S2CID 53118854.
  46. ^Ushikubo, Takayuki; Kita, Noriko T.; Cavosie, Aaron J.; Wilde, Simon A.; Rudnick, Roberta L.; Valley, John W. (2008). "Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust".Earth and Planetary Science Letters.272 (3–4):666–676.Bibcode:2008E&PSL.272..666U.doi:10.1016/j.epsl.2008.05.032.
  47. ^"Ancient mineral shows early Earth climate tough on continents". Physorg.com. June 13, 2008.
  48. ^Nemchin, A.; Pidgeon, R.; Whitehouse, M. (2006). "Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks".Earth and Planetary Science Letters.244 (1–2):218–233.Bibcode:2006E&PSL.244..218N.doi:10.1016/j.epsl.2006.01.054.
  49. ^Cavosie, A.J.; Valley, J.W.; Wilde, S.A. (2005). "Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean".Earth and Planetary Science Letters.235 (3–4):663–681.Bibcode:2005E&PSL.235..663C.doi:10.1016/j.epsl.2005.04.028.
  50. ^Valley, JW; Cavosie, AJ; Ushikobo, T; Reinhardt; Lawrence, DF; Larson, DJ; Clifton, PH; Kelly, TF; Wilde, SA; Moser, DE; Spicuzza, MJ (2014). "Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography".Nature Geoscience.7 (3):219–223.Bibcode:2014NatGe...7..219V.doi:10.1038/ngeo2075.
  51. ^abBorenstein, Seth (October 19, 2015)."Hints of life on what was thought to be desolate early Earth".Excite. Yonkers, NY:Mindspark Interactive Network.Associated Press. Archived fromthe original on October 23, 2015. RetrievedOctober 8, 2018.
  52. ^Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark;Mao, Wendy L. (2015)."Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon".Proceedings of the National Academy of Sciences.112 (47):14518–14521.Bibcode:2015PNAS..11214518B.doi:10.1073/pnas.1517557112.PMC 4664351.PMID 26483481.

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toZircon.
Forms
Making
People
Processes
Tools
Materials
Precious metals
Precious metalalloys
Base metals
Mineralgemstones
Organic gemstones
Other natural objects
Terms
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Zircon&oldid=1322173143"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp