Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Z-transform

From Wikipedia, the free encyclopedia
(Redirected fromZ transform)
Mathematical transform which converts signals from the time domain to the frequency domain
Not to be confused withFisher z-transformation.

Inmathematics andsignal processing, theZ-transform converts adiscrete-time signal, which is asequence ofreal orcomplex numbers, into a complex valuedfrequency-domain (thez-domain orz-plane) representation.[1][2][3]

It can be considered a discrete-time equivalent of theLaplace transform (thes-domain ors-plane).[4] This similarity is explored in the theory oftime-scale calculus.

While thecontinuous-time Fourier transform is evaluated on the s-domain's vertical axis (the imaginary axis), thediscrete-time Fourier transform is evaluated along the z-domain'sunit circle. The s-domain's lefthalf-plane maps to the area inside the z-domain's unit circle, while the s-domain's right half-plane maps to the area outside of the z-domain's unit circle.

In signal processing, one of the means of designingdigital filters is to take analog designs, subject them to abilinear transform which maps them from the s-domain to the z-domain, and then produce the digital filter by inspection, manipulation, or numerical approximation. Such methods tend not to be accurate except in the vicinity of the complex unity, i.e. at low frequencies.

History

[edit]

The foundational concept now recognized as the Z-transform, which is a cornerstone in the analysis and design of digital control systems, was not entirely novel when it emerged in the mid-20th century. Its embryonic principles can be traced back to the work of the French mathematicianPierre-Simon Laplace, who is better known for theLaplace transform, a closely related mathematical technique. However, the explicit formulation and application of what we now understand as the Z-transform were significantly advanced in 1947 byWitold Hurewicz and colleagues. Their work was motivated by the challenges presented by sampled-data control systems, which were becoming increasingly relevant in the context ofradar technology during that period. The Z-transform provided a systematic and effective method for solving linear difference equations with constant coefficients, which are ubiquitous in the analysis of discrete-time signals and systems.[5][6]

The method was further refined and gained its official nomenclature, "the Z-transform," in 1952, thanks to the efforts ofJohn R. Ragazzini andLotfi A. Zadeh, who were part of the sampled-data control group at Columbia University. Their work not only solidified the mathematical framework of the Z-transform but also expanded its application scope, particularly in the field of electrical engineering and control systems.[7][8]

A notable extension, known as the modified oradvanced Z-transform, was later introduced byEliahu I. Jury. Jury's work extended the applicability and robustness of the Z-transform, especially in handling initial conditions and providing a more comprehensive framework for the analysis of digital control systems. This advanced formulation has played a pivotal role in the design and stability analysis of discrete-time control systems, contributing significantly to the field of digital signal processing.[9][3]

Interestingly, the conceptual underpinnings of the Z-transform intersect with a broader mathematical concept known as the method ofgenerating functions, a powerful tool in combinatorics and probability theory. This connection was hinted at as early as 1730 byAbraham de Moivre, a pioneering figure in the development of probability theory. De Moivre utilized generating functions to solve problems in probability, laying the groundwork for what would eventually evolve into the Z-transform. From a mathematical perspective, the Z-transform can be viewed as a specific instance of aLaurent series, where thesequence of numbers under investigation is interpreted as thecoefficients in the (Laurent) expansion of ananalytic function. This perspective not only highlights the deep mathematical roots of the Z-transform but also illustrates its versatility and broad applicability across different branches of mathematics and engineering.[3]

Definition

[edit]

The Z-transform can be defined as either aone-sided ortwo-sided transform. (Just as we have theone-sided Laplace transform and thetwo-sided Laplace transform.)[10]

Bilateral Z-transform

[edit]

Thebilateral ortwo-sided Z-transform of a discrete-time signalx[n]{\displaystyle x[n]} is theformal power seriesX(z){\displaystyle X(z)} defined as:

X(z)=Z{x[n]}=n=x[n]zn{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}=\sum _{n=-\infty }^{\infty }x[n]z^{-n}}

wheren{\displaystyle n} is an integer andz{\displaystyle z} is, in general, acomplex number. Inpolar form,z{\displaystyle z} may be written as:

z=Aeiϕ=A(cosϕ+isinϕ){\displaystyle z=Ae^{i\phi }=A\cdot (\cos {\phi }+i\sin {\phi })}

whereA{\displaystyle A} is the magnitude ofz{\displaystyle z},i{\displaystyle i} is theimaginary unit, andϕ{\displaystyle \phi } is thecomplex argument (also referred to asangle orphase) inradians.

Unilateral Z-transform

[edit]

Alternatively, in cases wherex[n]{\displaystyle x[n]} is defined only forn0{\displaystyle n\geq 0}, thesingle-sided orunilateral Z-transform is defined as:

X(z)=Z{x[n]}=n=0x[n]zn.{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}=\sum _{n=0}^{\infty }x[n]z^{-n}.}

Insignal processing, this definition can be used to evaluate the Z-transform of theunit impulse response of a discrete-timecausal system.

An important example of the unilateral Z-transform is theprobability-generating function, where the componentx[n]{\displaystyle x[n]} is the probability that a discrete random variable takes the value. The properties of Z-transforms (listed in§ Properties) have useful interpretations in the context of probability theory.

Inverse Z-transform

[edit]

Theinverse Z-transform is:

x[n]=Z1{X(z)}=12πiCX(z)zn1dz{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}={\frac {1}{2\pi i}}\oint _{C}X(z)z^{n-1}dz}

whereC{\displaystyle C} is a counterclockwise closed path encircling the origin and entirely in theregion of convergence (ROC). In the case where the ROC is causal (seeExample 2), this means the pathC{\displaystyle C} must encircle all of the poles ofX(z){\displaystyle X(z)}.

A special case of thiscontour integral occurs whenC{\displaystyle C} is the unit circle. This contour can be used when the ROC includes the unit circle, which is always guaranteed whenX(z){\displaystyle X(z)} is stable, that is, when all the poles are inside the unit circle. With this contour, the inverse Z-transform simplifies to theinverse discrete-time Fourier transform, orFourier series, of the periodic values of the Z-transform around the unit circle:

x[n]=12πππX(eiω)eiωndω.{\displaystyle x[n]={\frac {1}{2\pi }}\int _{-\pi }^{\pi }X(e^{i\omega })e^{i\omega n}d\omega .}

The Z-transform with a finite range ofn{\displaystyle n} and a finite number of uniformly spacedz{\displaystyle z} values can be computed efficiently viaBluestein's FFT algorithm. Thediscrete-time Fourier transform (DTFT)—not to be confused with thediscrete Fourier transform (DFT)—is a special case of such a Z-transform obtained by restrictingz{\displaystyle z} to lie on the unit circle.

The following three methods are often used for the evaluation of the inverse -transform,

Direct Evaluation by Contour Integration

[edit]

This method involves applying theCauchy Residue Theorem to evaluate the inverse Z-transform. By integrating around a closed contour in the complex plane, the residues at the poles of the Z-transform function inside the ROC are summed. This technique is particularly useful when working with functions expressed in terms of complex variables.

Expansion into a Series of Terms in the Variablesz andz-1

[edit]

In this method, the Z-transform is expanded into a power series. This approach is useful when the Z-transform function is rational, allowing for the approximation of the inverse by expanding into a series and determining the signal coefficients term by term.

Partial-Fraction Expansion and Table Lookup

[edit]

This technique decomposes the Z-transform into a sum of simpler fractions, each corresponding to known Z-transform pairs. The inverse Z-transform is then determined by looking up each term in a standard table of Z-transform pairs. This method is widely used for its efficiency and simplicity, especially when the original function can be easily broken down into recognizable components.

Example:[11]

[edit]

A) Determine the inverse Z-transform of the following by series expansion method,

X(z)=111.5z1+0.5z2{\displaystyle X(z)={\frac {1}{1-1.5z^{-1}+0.5z^{-2}}}}

Solution:

Case 1:

ROC:|Z|>1{\displaystyle \left\vert Z\right\vert >1}

Since the ROC is the exterior of a circle,x(n){\displaystyle x(n)} is causal (signal existing for n≥0).

X(z)=1132z1+12z2=1+32z1+74z2+158z3+3116z4+....{\displaystyle X(z)={1 \over 1-{3 \over 2}z^{-1}+{1 \over 2}z^{-2}}=1+{{3 \over 2}z^{-1}}+{{7 \over 4}z^{-2}}+{{15 \over 8}z^{-3}}+{{31 \over 16}z^{-4}}+....}

thus,

x(n)={1,32,74,158,3116}{\displaystyle {\begin{aligned}x(n)&=\left\{1,{\frac {3}{2}},{\frac {7}{4}},{\frac {15}{8}},{\frac {31}{16}}\ldots \right\}\\&\qquad \!\uparrow \\\end{aligned}}} (arrow indicates term at x(0)=1)

Note that in each step of long division process we eliminate lowest power term ofz1{\displaystyle z^{-1}}.

Case 2:

ROC:|Z|<0.5{\displaystyle \left\vert Z\right\vert <0.5}

Since the ROC is the interior of a circle,x(n){\displaystyle x(n)} is anticausal (signal existing for n<0).

By performing long division we get,

X(z)=1132z1+12z2=2z2+6z3+14z4+30z5+{\displaystyle X(z)={\frac {1}{1-{\frac {3}{2}}z^{-1}+{\frac {1}{2}}z^{-2}}}=2z^{2}+6z^{3}+14z^{4}+30z^{5}+\ldots }

x(n)={30,14,6,2,0,0}  {\displaystyle {\begin{aligned}x(n)&=\{30,14,6,2,0,0\}\\&\qquad \qquad \qquad \quad \ \ \,\uparrow \\\end{aligned}}} (arrow indicates term at x(0)=0)

Note that in each step of long division process we eliminate lowest power term ofz{\displaystyle z}.

Note:

  1. When the signal is causal, we get positive powers ofz{\displaystyle z} and when the signal is anticausal, we get negative powers ofz{\displaystyle z}.
  2. zk{\displaystyle z^{k}} indicates term atx(k){\displaystyle x(-k)} andzk{\displaystyle z^{-k}} indicates term atx(k){\displaystyle x(k)}.

B) Determine the inverse Z-transform of the following by series expansion method,

Eliminating negative powers ifz{\displaystyle z} and dividing byz{\displaystyle z},

X(z)z=z2z(z21.5z+0.5)=zz21.5z+0.5{\displaystyle {\frac {X(z)}{z}}={\frac {z^{2}}{z(z^{2}-1.5z+0.5)}}={\frac {z}{z^{2}-1.5z+0.5}}}

By Partial Fraction Expansion,

X(z)z=z(z1)(z0.5)=A1z0.5+A2z1A1=(z0.5)X(z)z|z=0.5=0.5(0.51)=1A2=(z1)X(z)z|z=1=110.5=2X(z)z=2z11z0.5{\displaystyle {\begin{aligned}{\frac {X(z)}{z}}&={\frac {z}{(z-1)(z-0.5)}}={\frac {A_{1}}{z-0.5}}+{\frac {A_{2}}{z-1}}\\[4pt]&A_{1}=\left.{\frac {(z-0.5)X(z)}{z}}\right\vert _{z=0.5}={\frac {0.5}{(0.5-1)}}=-1\\[4pt]&A_{2}=\left.{\frac {(z-1)X(z)}{z}}\right\vert _{z=1}={\frac {1}{1-0.5}}={2}\\[4pt]{\frac {X(z)}{z}}&={\frac {2}{z-1}}-{\frac {1}{z-0.5}}\end{aligned}}}

Case 1:

ROC:|Z|>1{\displaystyle \left\vert Z\right\vert >1}

Both the terms are causal, hencex(n){\displaystyle x(n)} is causal.

x(n)=2(1)nu(n)1(0.5)nu(n)=(20.5n)u(n){\displaystyle {\begin{aligned}x(n)&=2{(1)^{n}}u(n)-1{(0.5)^{n}}u(n)\\&=(2-0.5^{n})u(n)\\\end{aligned}}}

Case 2:

ROC:|Z|<0.5{\displaystyle \left\vert Z\right\vert <0.5}

Both the terms are anticausal, hencex(n){\displaystyle x(n)} is anticausal.

x(n)=2(1)nu(n1)(1(0.5)nu(n1))=(0.5n2)u(n1){\displaystyle {\begin{aligned}x(n)&=-2{(1)^{n}}u(-n-1)-(-1{(0.5)^{n}}u(-n-1))\\&=(0.5^{n}-2)u(-n-1)\\\end{aligned}}}

Case 3:

ROC:0.5<|Z|<1{\displaystyle 0.5<\left\vert Z\right\vert <1}

One of the terms is causal (p=0.5 provides the causal part) and other is anticausal (p=1 provides the anticausal part), hencex(n){\displaystyle x(n)} is both sided.

x(n)=2(1)nu(n1)1(0.5)nu(n)=2u(n1)0.5nu(n){\displaystyle {\begin{aligned}x(n)&=-2{(1)^{n}}u(-n-1)-1{(0.5)^{n}}u(n)\\&=-2u(-n-1)-0.5^{n}u(n)\\\end{aligned}}}

Region of convergence

[edit]
See also:Pole–zero_plot § Discrete-time systems

Theregion of convergence (ROC) is the set of points in the complex plane for which the Z-transform summationconverges (i.e. doesn't blow up in magnitude to infinity):

ROC={z:|n=x[n]zn|<}{\displaystyle \mathrm {ROC} =\left\{z:\left|\sum _{n=-\infty }^{\infty }x[n]z^{-n}\right|<\infty \right\}}

Example 1 (no ROC)

[edit]

Letx[n]=(.5)n .{\displaystyle x[n]=(.5)^{n}\ .} Expandingx[n]{\displaystyle x[n]} on the interval(,){\displaystyle (-\infty ,\infty )} it becomes

x[n]={,(.5)3,(.5)2,(.5)1,1,(.5),(.5)2,(.5)3,}={,23,22,2,1,(.5),(.5)2,(.5)3,}.{\displaystyle x[n]=\left\{\dots ,(.5)^{-3},(.5)^{-2},(.5)^{-1},1,(.5),(.5)^{2},(.5)^{3},\dots \right\}=\left\{\dots ,2^{3},2^{2},2,1,(.5),(.5)^{2},(.5)^{3},\dots \right\}.}

Looking at the sum

n=x[n]zn.{\displaystyle \sum _{n=-\infty }^{\infty }x[n]z^{-n}\to \infty .}

Therefore, there are no values ofz{\displaystyle z} that satisfy this condition.

Example 2 (causal ROC)

[edit]
ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle).

Letx[n]=(.5)nu[n]{\displaystyle x[n]=(.5)^{n}\,u[n]} (whereu{\displaystyle u} is theHeaviside step function). Expandingx[n]{\displaystyle x[n]} on the interval(,){\displaystyle (-\infty ,\infty )} it becomes

x[n]={,0,0,0,1,(.5),(.5)2,(.5)3,}.{\displaystyle x[n]=\left\{\dots ,0,0,0,1,(.5),(.5)^{2},(.5)^{3},\dots \right\}.}

Looking at the sum

n=x[n]zn=n=0(.5)nzn=n=0(.5z)n=11(.5)z1.{\displaystyle \sum _{n=-\infty }^{\infty }x[n]z^{-n}=\sum _{n=0}^{\infty }(.5)^{n}z^{-n}=\sum _{n=0}^{\infty }\left({\frac {.5}{z}}\right)^{n}={\frac {1}{1-(.5)z^{-1}}}.}

The last equality arises from the infinitegeometric series and the equality only holds if|(.5)z1|<1,{\displaystyle |(.5)z^{-1}|<1,} which can be rewritten in terms ofz{\displaystyle z} as|z|>(.5).{\displaystyle |z|>(.5).} Thus, the ROC is|z|>(.5).{\displaystyle |z|>(.5).} In this case the ROC is the complex plane with a disc of radius 0.5 at the origin "punched out".

Example 3 (anti causal ROC)

[edit]
ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle).

Letx[n]=(.5)nu[n1]{\displaystyle x[n]=-(.5)^{n}\,u[-n-1]} (whereu{\displaystyle u} is theHeaviside step function). Expandingx[n]{\displaystyle x[n]} on the interval(,){\displaystyle (-\infty ,\infty )} it becomes

x[n]={,(.5)3,(.5)2,(.5)1,0,0,0,0,}.{\displaystyle x[n]=\left\{\dots ,-(.5)^{-3},-(.5)^{-2},-(.5)^{-1},0,0,0,0,\dots \right\}.}

Looking at the sum

n=x[n]zn=n=1(.5)nzn=m=1(z.5)m=(.5)1z1(.5)1z=1(.5)z11=11(.5)z1{\displaystyle {\begin{aligned}\sum _{n=-\infty }^{\infty }x[n]\,z^{-n}&=-\sum _{n=-\infty }^{-1}(.5)^{n}\,z^{-n}\\&=-\sum _{m=1}^{\infty }\left({\frac {z}{.5}}\right)^{m}\\&=-{\frac {(.5)^{-1}z}{1-(.5)^{-1}z}}\\&=-{\frac {1}{(.5)z^{-1}-1}}\\&={\frac {1}{1-(.5)z^{-1}}}\\\end{aligned}}}

and using the infinitegeometric series again, the equality only holds if|(.5)1z|<1{\displaystyle |(.5)^{-1}z|<1} which can be rewritten in terms ofz{\displaystyle z} as|z|<(.5).{\displaystyle |z|<(.5).} Thus, the ROC is|z|<(.5).{\displaystyle |z|<(.5).} In this case the ROC is a disc centered at the origin and of radius 0.5.

What differentiates this example from the previous example isonly the ROC. This is intentional to demonstrate that the transform result alone is insufficient.

Examples conclusion

[edit]

Examples 2 & 3 clearly show that the Z-transformX(z){\displaystyle X(z)} ofx[n]{\displaystyle x[n]} is unique when and only when specifying the ROC. Creating thepole–zero plot for the causal and anticausal case show that the ROC for either case does not include the pole that is at 0.5. This extends to cases with multiple poles: the ROC willnever contain poles.

In example 2, the causal system yields a ROC that includes|z|={\displaystyle |z|=\infty } while the anticausal system in example 3 yields an ROC that includes|z|=0.{\displaystyle |z|=0.}

ROC shown as a blue ring 0.5 < |z| < 0.75

In systems with multiple poles it is possible to have a ROC that includes neither|z|={\displaystyle |z|=\infty } nor|z|=0.{\displaystyle |z|=0.} The ROC creates a circular band. For example,

x[n]=(.5)nu[n](.75)nu[n1]{\displaystyle x[n]=(.5)^{n}\,u[n]-(.75)^{n}\,u[-n-1]}

has poles at 0.5 and 0.75. The ROC will be 0.5 < |z| < 0.75, which includes neither the origin nor infinity. Such a system is called a mixed-causality system as it contains a causal term(.5)nu[n]{\displaystyle (.5)^{n}\,u[n]} and an anticausal term(.75)nu[n1].{\displaystyle -(.75)^{n}\,u[-n-1].}

Thestability of a system can also be determined by knowing the ROC alone. If the ROC contains the unit circle (i.e., |z| = 1) then the system is stable. In the above systems the causal system (Example 2) is stable because |z| > 0.5 contains the unit circle.

Let us assume we are provided a Z-transform of a system without a ROC (i.e., an ambiguousx[n]{\displaystyle x[n]}). We can determine a uniquex[n]{\displaystyle x[n]} provided we desire the following:

  • Stability
  • Causality

For stability the ROC must contain the unit circle. If we need a causal system then the ROC must contain infinity and the system function will be a right-sided sequence. If we need an anticausal system then the ROC must contain the origin and the system function will be a left-sided sequence. If we need both stability and causality, all the poles of the system function must be inside the unit circle.

The uniquex[n]{\displaystyle x[n]} can then be found.

Properties

[edit]
Properties of the z-transform

Property

Time domainZ-domainProofROC
Definition of Z-transformx[n]{\displaystyle x[n]}X(z){\displaystyle X(z)}X(z)=Z{x[n]}{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}} (definition of the z-transform)

x[n]=Z1{X(z)}{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}} (definition of the inverse z-transform)

r2<|z|<r1{\displaystyle r_{2}<|z|<r_{1}}
Linearitya1x1[n]+a2x2[n]{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]}a1X1(z)+a2X2(z){\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)}X(z)=n=(a1x1[n]+a2x2[n])zn=a1n=x1[n]zn+a2n=x2[n]zn=a1X1(z)+a2X2(z){\displaystyle {\begin{aligned}X(z)&=\sum _{n=-\infty }^{\infty }(a_{1}x_{1}[n]+a_{2}x_{2}[n])z^{-n}\\&=a_{1}\sum _{n=-\infty }^{\infty }x_{1}[n]\,z^{-n}+a_{2}\sum _{n=-\infty }^{\infty }x_{2}[n]\,z^{-n}\\&=a_{1}X_{1}(z)+a_{2}X_{2}(z)\end{aligned}}}Contains ROC1 ∩ ROC2
Time expansionxK[n]={x[r],n=Kr0,nKZ{\displaystyle x_{K}[n]={\begin{cases}x[r],&n=Kr\\0,&n\notin K\mathbb {Z} \end{cases}}}

withKZ:={Kr:rZ}{\displaystyle K\mathbb {Z} :=\{Kr:r\in \mathbb {Z} \}}

X(zK){\displaystyle X(z^{K})}XK(z)=n=xK[n]zn=r=x[r]zrK=r=x[r](zK)r=X(zK){\displaystyle {\begin{aligned}X_{K}(z)&=\sum _{n=-\infty }^{\infty }x_{K}[n]z^{-n}\\&=\sum _{r=-\infty }^{\infty }x[r]z^{-rK}\\&=\sum _{r=-\infty }^{\infty }x[r](z^{K})^{-r}\\&=X(z^{K})\end{aligned}}}R1K{\displaystyle R^{\frac {1}{K}}}
Decimationx[Kn]{\displaystyle x[Kn]}1Kp=0K1X(z1Kei2πKp){\displaystyle {\frac {1}{K}}\sum _{p=0}^{K-1}X\left(z^{\tfrac {1}{K}}\cdot e^{-i{\tfrac {2\pi }{K}}p}\right)}ohio-state.edu oree.ic.ac.uk
Time delayx[nk]{\displaystyle x[n-k]}

withk>0{\displaystyle k>0} andx:x[n]=0 n<0{\displaystyle x:x[n]=0\ \forall \,n<0}

zkX(z){\displaystyle z^{-k}X(z)}Z{x[nk]}=n=0x[nk]zn=m=kx[m]z(m+k)m=nk=m=kx[m]zmzk=zkm=kx[m]zm=zkm=0x[m]zmx[β]=0,β<0=zkX(z){\displaystyle {\begin{aligned}{\mathcal {Z}}\{x[n-k]\}&=\sum _{n=0}^{\infty }x[n-k]z^{-n}\\&=\sum _{m=-k}^{\infty }x[m]z^{-(m+k)}&&m=n-k\\&=\sum _{m=-k}^{\infty }x[m]z^{-m}z^{-k}\\&=z^{-k}\sum _{m=-k}^{\infty }x[m]z^{-m}\\&=z^{-k}\sum _{m=0}^{\infty }x[m]z^{-m}&&x[\beta ]=0,\forall \beta <0\\&=z^{-k}X(z)\end{aligned}}}ROC, exceptz=0{\displaystyle z{=}0} ifk>0{\displaystyle k>0} andz={\displaystyle z{=}\infty } ifk<0{\displaystyle k<0}
Time advancex[n+k]{\displaystyle x[n+k]}

withk>0{\displaystyle k>0}

Bilateral Z-transform:

zkX(z){\displaystyle z^{k}X(z)}Unilateral Z-transform:[12]zkX(z)zkn=0k1x[n]zn{\displaystyle z^{k}\,X(z)-z^{k}\sum _{n=0}^{k-1}x[n]\,z^{-n}}

First difference backwardx[n]x[n1]{\displaystyle x[n]-x[n-1]}

withx[n]=0{\displaystyle x[n]{=}0} forn<0{\displaystyle n<0}

(1z1)X(z){\displaystyle (1-z^{-1})\,X(z)}Contains the intersection of ROC ofX1(z){\displaystyle X_{1}(z)} andz0{\displaystyle z\neq 0}
First difference forwardx[n+1]x[n]{\displaystyle x[n+1]-x[n]}(z1)X(z)zx[0]{\displaystyle (z-1)\,X(z)-z\,x[0]}
Time reversalx[n]{\displaystyle x[-n]}X(z1){\displaystyle X(z^{-1})}Z{x(n)}=n=x[n]zn=m=x[m]zm=m=x[m](z1)m=X(z1){\displaystyle {\begin{aligned}{\mathcal {Z}}\{x(-n)\}&=\sum _{n=-\infty }^{\infty }x[-n]z^{-n}\\&=\sum _{m=-\infty }^{\infty }x[m]z^{m}\\&=\sum _{m=-\infty }^{\infty }x[m]{(z^{-1})}^{-m}\\&=X(z^{-1})\\\end{aligned}}}1r1<|z|<1r2{\displaystyle {\tfrac {1}{r_{1}}}<|z|<{\tfrac {1}{r_{2}}}}
Scaling in the z-domainanx[n]{\displaystyle a^{n}x[n]}X(a1z){\displaystyle X(a^{-1}z)}Z{anx[n]}=n=anx[n]zn=n=x[n](a1z)n=X(a1z){\displaystyle {\begin{aligned}{\mathcal {Z}}\left\{a^{n}x[n]\right\}&=\sum _{n=-\infty }^{\infty }a^{n}x[n]z^{-n}\\&=\sum _{n=-\infty }^{\infty }x[n](a^{-1}z)^{-n}\\&=X(a^{-1}z)\end{aligned}}}|a|r2<|z|<|a|r1{\displaystyle |a|r_{2}<|z|<|a|r_{1}}
Complex conjugationx[n]{\displaystyle x^{*}[n]}X(z){\displaystyle X^{*}(z^{*})}Z{x(n)}=n=x[n]zn=n=[x[n](z)n]=[n=x[n](z)n]=X(z){\displaystyle {\begin{aligned}{\mathcal {Z}}\{x^{*}(n)\}&=\sum _{n=-\infty }^{\infty }x^{*}[n]z^{-n}\\&=\sum _{n=-\infty }^{\infty }\left[x[n](z^{*})^{-n}\right]^{*}\\&=\left[\sum _{n=-\infty }^{\infty }x[n](z^{*})^{-n}\right]^{*}\\&=X^{*}(z^{*})\end{aligned}}}
Real partRe{x[n]}{\displaystyle \operatorname {Re} \{x[n]\}}12[X(z)+X(z)]{\displaystyle {\tfrac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
Imaginary partIm{x[n]}{\displaystyle \operatorname {Im} \{x[n]\}}12i[X(z)X(z)]{\displaystyle {\tfrac {1}{2i}}\left[X(z)-X^{*}(z^{*})\right]}
Differentiation in the z-domainnx[n]{\displaystyle n\,x[n]}zdX(z)dz{\displaystyle -z{\frac {dX(z)}{dz}}}Z{nx(n)}=n=nx[n]zn=zn=nx[n]zn1=zn=x[n](nzn1)=zn=x[n]ddz(zn)=zdX(z)dz{\displaystyle {\begin{aligned}{\mathcal {Z}}\{n\,x(n)\}&=\sum _{n=-\infty }^{\infty }n\,x[n]z^{-n}\\&=z\sum _{n=-\infty }^{\infty }n\,x[n]z^{-n-1}\\&=-z\sum _{n=-\infty }^{\infty }x[n](-n\,z^{-n-1})\\&=-z\sum _{n=-\infty }^{\infty }x[n]{\frac {d}{dz}}(z^{-n})\\&=-z{\frac {dX(z)}{dz}}\end{aligned}}}ROC, ifX(z){\displaystyle X(z)} is rational;

ROC possibly excluding the boundary, ifX(z){\displaystyle X(z)} is irrational[13]

Convolutionx1[n]x2[n]{\displaystyle x_{1}[n]*x_{2}[n]}X1(z)X2(z){\displaystyle X_{1}(z)\,X_{2}(z)}Z{x1(n)x2(n)}=Z{l=x1[l]x2[nl]}=n=[l=x1[l]x2[nl]]zn=l=x1[l][n=x2[nl]zn]=[l=x1(l)zl][n=x2[n]zn]=X1(z)X2(z){\displaystyle {\begin{aligned}{\mathcal {Z}}\{x_{1}(n)*x_{2}(n)\}&={\mathcal {Z}}\left\{\sum _{l=-\infty }^{\infty }x_{1}[l]x_{2}[n-l]\right\}\\&=\sum _{n=-\infty }^{\infty }\left[\sum _{l=-\infty }^{\infty }x_{1}[l]x_{2}[n-l]\right]z^{-n}\\&=\sum _{l=-\infty }^{\infty }x_{1}[l]\left[\sum _{n=-\infty }^{\infty }x_{2}[n-l]z^{-n}\right]\\&=\left[\sum _{l=-\infty }^{\infty }x_{1}(l)z^{-l}\right]\!\!\left[\sum _{n=-\infty }^{\infty }x_{2}[n]z^{-n}\right]\\&=X_{1}(z)X_{2}(z)\end{aligned}}}Contains ROC1 ∩ ROC2
Cross-correlationrx1,x2=x1[n]x2[n]{\displaystyle r_{x_{1},x_{2}}=x_{1}^{*}[-n]*x_{2}[n]}Rx1,x2(z)=X1(1z)X2(z){\displaystyle R_{x_{1},x_{2}}(z)=X_{1}^{*}({\tfrac {1}{z^{*}}})X_{2}(z)}Contains the intersection of ROC ofX1(1z){\displaystyle X_{1}({\tfrac {1}{z^{*}}})} andX2(z){\displaystyle X_{2}(z)}
Accumulationk=nx[k]{\displaystyle \sum _{k=-\infty }^{n}x[k]}11z1X(z){\displaystyle {\frac {1}{1-z^{-1}}}X(z)}n=k=nx[k]zn=n=(x[n]+)zn=X(z)(1+z1+z2+)=X(z)j=0zj=X(z)11z1{\displaystyle {\begin{aligned}\sum _{n=-\infty }^{\infty }\sum _{k=-\infty }^{n}x[k]z^{-n}&=\sum _{n=-\infty }^{\infty }(x[n]+\cdots )z^{-n}\\&=X(z)\left(1+z^{-1}+z^{-2}+\cdots \right)\\&=X(z)\sum _{j=0}^{\infty }z^{-j}\\&=X(z){\frac {1}{1-z^{-1}}}\end{aligned}}}
Multiplicationx1[n]x2[n]{\displaystyle x_{1}[n]\,x_{2}[n]}12πiCX1(v)X2(zv)v1dv{\displaystyle {\frac {1}{2\pi i}}\oint _{C}X_{1}(v)X_{2}({\tfrac {z}{v}})v^{-1}\mathrm {d} v}-

Parseval's theorem

n=x1[n]x2[n]=12πiCX1(v)X2(1v)v1dv{\displaystyle \sum _{n=-\infty }^{\infty }x_{1}[n]x_{2}^{*}[n]\quad =\quad {\frac {1}{2\pi i}}\oint _{C}X_{1}(v)X_{2}^{*}({\tfrac {1}{v^{*}}})v^{-1}\mathrm {d} v}

Initial value theorem: Ifx[n]{\displaystyle x[n]} is causal, then

x[0]=limzX(z).{\displaystyle x[0]=\lim _{z\to \infty }X(z).}

Final value theorem: If the poles of(z1)X(z){\displaystyle (z-1)X(z)} are inside the unit circle, then

x[]=limz1(z1)X(z).{\displaystyle x[\infty ]=\lim _{z\to 1}(z-1)X(z).}

Table of common Z-transform pairs

[edit]

Here:

u:nu[n]={1,n00,n<0{\displaystyle u:n\mapsto u[n]={\begin{cases}1,&n\geq 0\\0,&n<0\end{cases}}}

is theunit (or Heaviside) step function and

δ:nδ[n]={1,n=00,n0{\displaystyle \delta :n\mapsto \delta [n]={\begin{cases}1,&n=0\\0,&n\neq 0\end{cases}}}

is thediscrete-time unit impulse function (cfDirac delta function which is a continuous-time version). The two functions are chosen together so that the unit step function is the accumulation (running total) of the unit impulse function.

Signal,x[n]{\displaystyle x[n]}Z-transform,X(z){\displaystyle X(z)}ROC
1δ[n]{\displaystyle \delta [n]}1allz
2δ[nn0]{\displaystyle \delta [n-n_{0}]}zn0{\displaystyle z^{-n_{0}}}z0{\displaystyle z\neq 0}
3u[n]{\displaystyle u[n]\,}11z1{\displaystyle {\frac {1}{1-z^{-1}}}}|z|>1{\displaystyle |z|>1}
4u[n1]{\displaystyle -u[-n-1]}11z1{\displaystyle {\frac {1}{1-z^{-1}}}}|z|<1{\displaystyle |z|<1}
5nu[n]{\displaystyle nu[n]}z1(1z1)2{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}|z|>1{\displaystyle |z|>1}
6nu[n1]{\displaystyle -nu[-n-1]\,}z1(1z1)2{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}|z|<1{\displaystyle |z|<1}
7n2u[n]{\displaystyle n^{2}u[n]}z1(1+z1)(1z1)3{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}|z|>1{\displaystyle |z|>1\,}
8n2u[n1]{\displaystyle -n^{2}u[-n-1]\,}z1(1+z1)(1z1)3{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}|z|<1{\displaystyle |z|<1\,}
9n3u[n]{\displaystyle n^{3}u[n]}z1(1+4z1+z2)(1z1)4{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}|z|>1{\displaystyle |z|>1\,}
10n3u[n1]{\displaystyle -n^{3}u[-n-1]}z1(1+4z1+z2)(1z1)4{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}|z|<1{\displaystyle |z|<1\,}
11anu[n]{\displaystyle a^{n}u[n]}11az1{\displaystyle {\frac {1}{1-az^{-1}}}}|z|>|a|{\displaystyle |z|>|a|}
12anu[n1]{\displaystyle -a^{n}u[-n-1]}11az1{\displaystyle {\frac {1}{1-az^{-1}}}}|z|<|a|{\displaystyle |z|<|a|}
13nanu[n]{\displaystyle na^{n}u[n]}az1(1az1)2{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}|z|>|a|{\displaystyle |z|>|a|}
14nanu[n1]{\displaystyle -na^{n}u[-n-1]}az1(1az1)2{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}|z|<|a|{\displaystyle |z|<|a|}
15n2anu[n]{\displaystyle n^{2}a^{n}u[n]}az1(1+az1)(1az1)3{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}|z|>|a|{\displaystyle |z|>|a|}
16n2anu[n1]{\displaystyle -n^{2}a^{n}u[-n-1]}az1(1+az1)(1az1)3{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}|z|<|a|{\displaystyle |z|<|a|}
17(n+m1m1)anu[n]{\displaystyle \left({\begin{array}{c}n+m-1\\m-1\end{array}}\right)a^{n}u[n]}[14]1(1az1)m{\displaystyle {\frac {1}{(1-az^{-1})^{m}}}}, for positive integerm{\displaystyle m}[13]|z|>|a|{\displaystyle |z|>|a|}
18(1)m(n1m1)anu[nm]{\displaystyle (-1)^{m}\left({\begin{array}{c}-n-1\\m-1\end{array}}\right)a^{n}u[-n-m]}1(1az1)m{\displaystyle {\frac {1}{(1-az^{-1})^{m}}}}, for positive integerm{\displaystyle m}[13]|z|<|a|{\displaystyle |z|<|a|}
19cos(ω0n)u[n]{\displaystyle \cos(\omega _{0}n)u[n]}1z1cos(ω0)12z1cos(ω0)+z2{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}|z|>1{\displaystyle |z|>1}
20sin(ω0n)u[n]{\displaystyle \sin(\omega _{0}n)u[n]}z1sin(ω0)12z1cos(ω0)+z2{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}|z|>1{\displaystyle |z|>1}
21ancos(ω0n)u[n]{\displaystyle a^{n}\cos(\omega _{0}n)u[n]}1az1cos(ω0)12az1cos(ω0)+a2z2{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}|z|>|a|{\displaystyle |z|>|a|}
22ansin(ω0n)u[n]{\displaystyle a^{n}\sin(\omega _{0}n)u[n]}az1sin(ω0)12az1cos(ω0)+a2z2{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}|z|>|a|{\displaystyle |z|>|a|}

Relationship to Fourier series and Fourier transform

[edit]
Further information:Discrete-time Fourier transform § Relationship to the Z-transform

For values ofz{\displaystyle z} in the region|z|=1{\displaystyle |z|{=}1}, known as theunit circle, we can express the transform as a function of a single real variableω{\displaystyle \omega } by definingz=eiω.{\displaystyle z{=}e^{i\omega }.} And the bi-lateral transform reduces to aFourier series:

n=x[n] zn=n=x[n] eiωn,{\displaystyle \sum _{n=-\infty }^{\infty }x[n]\ z^{-n}=\sum _{n=-\infty }^{\infty }x[n]\ e^{-i\omega n},}

Eq.1

which is also known as thediscrete-time Fourier transform (DTFT) of thex[n]{\displaystyle x[n]} sequence. This2π{\displaystyle 2\pi }-periodic function is theperiodic summation of aFourier transform, which makes it a widely used analysis tool. To understand this, letX(f){\displaystyle X(f)} be the Fourier transform of any function,x(t){\displaystyle x(t)}, whose samples at some intervalT{\displaystyle T} equal thex[n]{\displaystyle x[n]} sequence. Then the DTFT of thex[n]{\displaystyle x[n]} sequence can be written as follows.

n=x(nT)x[n] e2iπfnTDTFT=1Tk=X(fk/T),{\displaystyle \underbrace {\sum _{n=-\infty }^{\infty }\overbrace {x(nT)} ^{x[n]}\ e^{-2i\pi fnT}} _{\text{DTFT}}={\frac {1}{T}}\sum _{k=-\infty }^{\infty }X(f-k/T),}

Eq.2

whereT{\displaystyle T} has units of seconds,f{\displaystyle f} has units ofhertz. Comparison of the two series reveals thatω=2πfT{\displaystyle \omega {=}2\pi fT} is anormalized frequency with unit ofradian per sample. The valueω=2π{\displaystyle \omega {=}2\pi } corresponds tof=1T{\textstyle f{=}{\frac {1}{T}}}. And now, with the substitutionf=ω2πT,{\textstyle f{=}{\frac {\omega }{2\pi T}},}Eq.1 can be expressed in terms ofX(ω2πk2πT){\displaystyle X({\tfrac {\omega -2\pi k}{2\pi T}})} (a Fourier transform):

n=x[n] eiωn=1Tk=X(ω2πTkT)X(ω2πk2πT).{\displaystyle \sum _{n=-\infty }^{\infty }x[n]\ e^{-i\omega n}={\frac {1}{T}}\sum _{k=-\infty }^{\infty }\underbrace {X\left({\tfrac {\omega }{2\pi T}}-{\tfrac {k}{T}}\right)} _{X\left({\frac {\omega -2\pi k}{2\pi T}}\right)}.}

Eq.3

As parameterT changes, the individual terms ofEq.2 move farther apart or closer together along thef-axis. InEq.3 however, the centers remain 2π apart, while their widths expand or contract. When sequencex(nT){\displaystyle x(nT)} represents theimpulse response of anLTI system, these functions are also known as itsfrequency response. When thex(nT){\displaystyle x(nT)} sequence is periodic, its DTFT is divergent at one or more harmonic frequencies, and zero at all other frequencies. This is often represented by the use of amplitude-variantDirac delta functions at the harmonic frequencies. Due to periodicity, there are only a finite number of unique amplitudes, which are readily computed by the much simplerdiscrete Fourier transform (DFT). (SeeDiscrete-time Fourier transform § Periodic data.)

Relationship to Laplace transform

[edit]
Further information:Laplace transform § Z-transform

Bilinear transform

[edit]
Main article:Bilinear transform

Thebilinear transform can be used to convert continuous-time filters (represented in the Laplace domain) into discrete-time filters (represented in the Z-domain), and vice versa. The following substitution is used:

s=2T(z1)(z+1){\displaystyle s={\frac {2}{T}}{\frac {(z-1)}{(z+1)}}}

to convert some functionH(s){\displaystyle H(s)} in the Laplace domain to a functionH(z){\displaystyle H(z)} in the Z-domain (Tustin transformation), or

z=esT1+sT/21sT/2{\displaystyle z=e^{sT}\approx {\frac {1+sT/2}{1-sT/2}}}

from the Z-domain to the Laplace domain. Through the bilinear transformation, the complexs-plane (of the Laplace transform) is mapped to the complex z-plane (of the z-transform). While this mapping is (necessarily) nonlinear, it is useful in that it maps the entireiω{\displaystyle i\omega } axis of thes-plane onto theunit circle in the z-plane. As such, the Fourier transform (which is the Laplace transform evaluated on theiω{\displaystyle i\omega } axis) becomes the discrete-time Fourier transform. This assumes that the Fourier transform exists; i.e., that theiω{\displaystyle i\omega } axis is in the region of convergence of the Laplace transform.

Starred transform

[edit]
Main article:Starred transform

Given a one-sided Z-transformX(z){\displaystyle X(z)} of a time-sampled function, the correspondingstarred transform produces a Laplace transform and restores the dependence onT{\displaystyle T} (the sampling parameter):

X(s)=X(z)|z=esT{\displaystyle {\bigg .}X^{*}(s)=X(z){\bigg |}_{\displaystyle z=e^{sT}}}

The inverse Laplace transform is a mathematical abstraction known as animpulse-sampled function.

Linear constant-coefficient difference equation

[edit]

The linear constant-coefficient difference (LCCD) equation is a representation for a linear system based on theautoregressive moving-average equation:

p=0Ny[np]αp=q=0Mx[nq]βq.{\displaystyle \sum _{p=0}^{N}y[n-p]\alpha _{p}=\sum _{q=0}^{M}x[n-q]\beta _{q}.}

Both sides of the above equation can be divided byα0{\displaystyle \alpha _{0}} if it is not zero. By normalizing withα0=1,{\displaystyle \alpha _{0}{=}1,} the LCCD equation can be written

y[n]=q=0Mx[nq]βqp=1Ny[np]αp.{\displaystyle y[n]=\sum _{q=0}^{M}x[n-q]\beta _{q}-\sum _{p=1}^{N}y[n-p]\alpha _{p}.}

This form of the LCCD equation is favorable to make it more explicit that the "current" outputy[n]{\displaystyle y[n]} is a function of past outputsy[np],{\displaystyle y[n-p],} current inputx[n],{\displaystyle x[n],} and previous inputsx[nq].{\displaystyle x[n-q].}

Transfer function

[edit]

Taking the Z-transform of the above equation (using linearity and time-shifting laws) yields:

Y(z)p=0Nzpαp=X(z)q=0Mzqβq{\displaystyle Y(z)\sum _{p=0}^{N}z^{-p}\alpha _{p}=X(z)\sum _{q=0}^{M}z^{-q}\beta _{q}}

whereX(z){\displaystyle X(z)} andY(z){\displaystyle Y(z)} are the z-transform ofx[n]{\displaystyle x[n]} andy[n],{\displaystyle y[n],} respectively. (Notation conventions typically use capitalized letters to refer to the z-transform of a signal denoted by a corresponding lower case letter, similar to the convention used for notating Laplace transforms.)

Rearranging results in the system'stransfer function:

H(z)=Y(z)X(z)=q=0Mzqβqp=0Nzpαp=β0+z1β1+z2β2++zMβMα0+z1α1+z2α2++zNαN.{\displaystyle H(z)={\frac {Y(z)}{X(z)}}={\frac {\sum _{q=0}^{M}z^{-q}\beta _{q}}{\sum _{p=0}^{N}z^{-p}\alpha _{p}}}={\frac {\beta _{0}+z^{-1}\beta _{1}+z^{-2}\beta _{2}+\cdots +z^{-M}\beta _{M}}{\alpha _{0}+z^{-1}\alpha _{1}+z^{-2}\alpha _{2}+\cdots +z^{-N}\alpha _{N}}}.}

Zeros and poles

[edit]

From thefundamental theorem of algebra thenumerator hasM{\displaystyle M}roots (corresponding to zeros ofH{\displaystyle H}) and thedenominator hasN{\displaystyle N} roots (corresponding to poles). Rewriting thetransfer function in terms ofzeros and poles

H(z)=(1q1z1)(1q2z1)(1qMz1)(1p1z1)(1p2z1)(1pNz1),{\displaystyle H(z)={\frac {(1-q_{1}z^{-1})(1-q_{2}z^{-1})\cdots (1-q_{M}z^{-1})}{(1-p_{1}z^{-1})(1-p_{2}z^{-1})\cdots (1-p_{N}z^{-1})}},}

whereqk{\displaystyle q_{k}} is thekth{\displaystyle k^{\text{th}}} zero andpk{\displaystyle p_{k}} is thekth{\displaystyle k^{\text{th}}} pole. The zeros and poles are commonly complex and when plotted on the complex plane (z-plane) it is called thepole–zero plot.

In addition, there may also exist zeros and poles atz=0{\displaystyle z{=}0} andz=.{\displaystyle z{=}\infty .} If we take these poles and zeros as well as multiple-order zeros and poles into consideration, the number of zeros and poles are always equal.

By factoring the denominator,partial fraction decomposition can be used, which can then be transformed back to the time domain. Doing so would result in theimpulse response and the linear constant coefficient difference equation of the system.

Output response

[edit]

If such a systemH(z){\displaystyle H(z)} is driven by a signalX(z){\displaystyle X(z)} then the output isY(z)=H(z)X(z).{\displaystyle Y(z)=H(z)X(z).} By performingpartial fraction decomposition onY(z){\displaystyle Y(z)} and then taking the inverse Z-transform the outputy[n]{\displaystyle y[n]} can be found. In practice, it is often useful to fractionally decomposeY(z)z{\displaystyle \textstyle {\frac {Y(z)}{z}}} before multiplying that quantity byz{\displaystyle z} to generate a form ofY(z){\displaystyle Y(z)} which has terms with easily computable inverse Z-transforms.

See also

[edit]

References

[edit]
  1. ^Mandal, Jyotsna Kumar (2020). "Z-Transform-Based Reversible Encoding".Reversible Steganography and Authentication via Transform Encoding. Studies in Computational Intelligence. Vol. 901. Singapore: Springer Singapore. pp. 157–195.doi:10.1007/978-981-15-4397-5_7.ISBN 978-981-15-4396-8.ISSN 1860-949X.S2CID 226413693.Z is a complex variable. Z-transform converts the discrete spatial domain signal into complex frequency domain representation. Z-transform is derived from the Laplace transform.
  2. ^Lynn, Paul A. (1986). "The Laplace Transform and thez-transform".Electronic Signals and Systems. London: Macmillan Education UK. pp. 225–272.doi:10.1007/978-1-349-18461-3_6.ISBN 978-0-333-39164-8.Laplace Transform and thez-transform are closely related to the Fourier Transform.z-transform is especially suitable for dealing with discrete signals and systems. It offers a more compact and convenient notation than the discrete-time Fourier Transform.
  3. ^abcJury, Eliahu Ibrahim (1964).Theory and application of the z-transform method. New York: John Wiley & Sons. pp. XIII, 330 s.
  4. ^Palani, S. (2021-08-26). "Thez-Transform Analysis of Discrete Time Signals and Systems".Signals and Systems. Cham: Springer International Publishing. pp. 921–1055.doi:10.1007/978-3-030-75742-7_9.ISBN 978-3-030-75741-0.S2CID 238692483.z-transform is the discrete counterpart of Laplace transform.z-transform converts difference equations of discrete time systems to algebraic equations which simplifies the discrete time system analysis. Laplace transform andz-transform are common except that Laplace transform deals with continuous time signals and systems.
  5. ^E. R. Kanasewich (1981).Time Sequence Analysis in Geophysics. University of Alberta. pp. 186, 249.ISBN 978-0-88864-074-1.
  6. ^E. R. Kanasewich (1981).Time sequence analysis in geophysics (3rd ed.). University of Alberta. pp. 185–186.ISBN 978-0-88864-074-1.
  7. ^Ragazzini, J. R.; Zadeh, L. A. (1952). "The analysis of sampled-data systems".Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.71 (5):225–234.doi:10.1109/TAI.1952.6371274.S2CID 51674188.
  8. ^Cornelius T. Leondes (1996).Digital control systems implementation and computational techniques. Academic Press. p. 123.ISBN 978-0-12-012779-5.
  9. ^Eliahu Ibrahim Jury (1958).Sampled-Data Control Systems. John Wiley & Sons.
  10. ^Jackson, Leland B. (1996). "The z Transform".Digital Filters and Signal Processing. Boston, MA: Springer US. pp. 29–54.doi:10.1007/978-1-4757-2458-5_3.ISBN 978-1-4419-5153-3.z transform is to discrete-time systems what the Laplace transform is to continuous-time systems.z is a complex variable. This is sometimes referred to as the two-sidedz transform, with the one-sided z transform being the same except for a summation fromn = 0 to infinity. The primary use of the one sided transform ... is for causal sequences, in which case the two transforms are the same anyway. We will not, therefore, make this distinction and will refer to ... as simply the z transform ofx(n).
  11. ^Proakis, John; Manolakis, Dimitris.Digital Signal Processing Principles, Algorithms and Applications (3rd ed.). PRENTICE-HALL INTERNATIONAL, INC.
  12. ^Bolzern, Paolo; Scattolini, Riccardo; Schiavoni, Nicola (2015).Fondamenti di Controlli Automatici (in Italian). MC Graw Hill Education.ISBN 978-88-386-6882-1.
  13. ^abcA. R. Forouzan (2016). "Region of convergence of derivative of Z transform".Electronics Letters.52 (8):617–619.Bibcode:2016ElL....52..617F.doi:10.1049/el.2016.0189.S2CID 124802942.

Further reading

[edit]
  • Refaat El Attar,Lecture notes on Z-Transform, Lulu Press, Morrisville NC, 2005.ISBN 1-4116-1979-X.
  • Ogata, Katsuhiko,Discrete Time Control Systems 2nd Ed, Prentice-Hall Inc, 1995, 1987.ISBN 0-13-034281-5.
  • Alan V. Oppenheim and Ronald W. Schafer (1999). Discrete-Time Signal Processing, 2nd Edition, Prentice Hall Signal Processing Series.ISBN 0-13-754920-2.

External links

[edit]
Theory
Sub-fields
Techniques
Sampling
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Z-transform&oldid=1302803780"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp