| Named after | John Wilson |
|---|---|
| No. of known terms | 3 |
| First terms | 5,13,563 |
| OEIS index |
|
Innumber theory, aWilson prime is aprime number such thatdivides, where "" denotes thefactorial function; compare this withWilson's theorem, which states that every prime divides. Both are named for 18th-centuryEnglish mathematicianJohn Wilson; in 1770,Edward Waring credited the theorem to Wilson,[1] although it had been stated centuries earlier byIbn al-Haytham.[2]
The only known Wilson primes are5,13, and563 (sequenceA007540 in theOEIS). Costa et al. write that "the case is trivial", and credit the observation that 13 is a Wilson prime toMathews (1892).[3][4] Early work on these numbers included searches byN. G. W. H. Beeger andEmma Lehmer,[5][3][6] but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem.[3][7][8] If any others exist, they must be greater than 2 × 1013.[3] It has beenconjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval is about.[9]
Several computer searches have been done in the hope of finding new Wilson primes.[10][11][12]TheIbercivisdistributed computing project includes a search for Wilson primes.[13] Another search was coordinated at theGreat Internet Mersenne Prime Search forum.[14]
Wilson's theorem can be expressed in general as for everyinteger and prime. Generalized Wilson primes of ordern are the primesp such that divides.
It was conjectured that for everynatural numbern, there are infinitely many Wilson primes of ordern.
The smallest generalized Wilson primes of order are:
| p | B |
|---|---|
| 1282279 | +20 |
| 1306817 | −30 |
| 1308491 | −55 |
| 1433813 | −32 |
| 1638347 | −45 |
| 1640147 | −88 |
| 1647931 | +14 |
| 1666403 | +99 |
| 1750901 | +34 |
| 1851953 | −50 |
| 2031053 | −18 |
| 2278343 | +21 |
| 2313083 | +15 |
| 2695933 | −73 |
| 3640753 | +69 |
| 3677071 | −32 |
| 3764437 | −99 |
| 3958621 | +75 |
| 5062469 | +39 |
| 5063803 | +40 |
| 6331519 | +91 |
| 6706067 | +45 |
| 7392257 | +40 |
| 8315831 | +3 |
| 8871167 | −85 |
| 9278443 | −75 |
| 9615329 | +27 |
| 9756727 | +23 |
| 10746881 | −7 |
| 11465149 | −62 |
| 11512541 | −26 |
| 11892977 | −7 |
| 12632117 | −27 |
| 12893203 | −53 |
| 14296621 | +2 |
| 16711069 | +95 |
| 16738091 | +58 |
| 17879887 | +63 |
| 19344553 | −93 |
| 19365641 | +75 |
| 20951477 | +25 |
| 20972977 | +58 |
| 21561013 | −90 |
| 23818681 | +23 |
| 27783521 | −51 |
| 27812887 | +21 |
| 29085907 | +9 |
| 29327513 | +13 |
| 30959321 | +24 |
| 33187157 | +60 |
| 33968041 | +12 |
| 39198017 | −7 |
| 45920923 | −63 |
| 51802061 | +4 |
| 53188379 | −54 |
| 56151923 | −1 |
| 57526411 | −66 |
| 64197799 | +13 |
| 72818227 | −27 |
| 87467099 | −2 |
| 91926437 | −32 |
| 92191909 | +94 |
| 93445061 | −30 |
| 93559087 | −3 |
| 94510219 | −69 |
| 101710369 | −70 |
| 111310567 | +22 |
| 117385529 | −43 |
| 176779259 | +56 |
| 212911781 | −92 |
| 216331463 | −36 |
| 253512533 | +25 |
| 282361201 | +24 |
| 327357841 | −62 |
| 411237857 | −84 |
| 479163953 | −50 |
| 757362197 | −28 |
| 824846833 | +60 |
| 866006431 | −81 |
| 1227886151 | −51 |
| 1527857939 | −19 |
| 1636804231 | +64 |
| 1686290297 | +18 |
| 1767839071 | +8 |
| 1913042311 | −65 |
| 1987272877 | +5 |
| 2100839597 | −34 |
| 2312420701 | −78 |
| 2476913683 | +94 |
| 3542985241 | −74 |
| 4036677373 | −5 |
| 4271431471 | +83 |
| 4296847931 | +41 |
| 5087988391 | +51 |
| 5127702389 | +50 |
| 7973760941 | +76 |
| 9965682053 | −18 |
| 10242692519 | −97 |
| 11355061259 | −45 |
| 11774118061 | −1 |
| 12896325149 | +86 |
| 13286279999 | +52 |
| 20042556601 | +27 |
| 21950810731 | +93 |
| 23607097193 | +97 |
| 24664241321 | +46 |
| 28737804211 | −58 |
| 35525054743 | +26 |
| 41659815553 | +55 |
| 42647052491 | +10 |
| 44034466379 | +39 |
| 60373446719 | −48 |
| 64643245189 | −21 |
| 66966581777 | +91 |
| 67133912011 | +9 |
| 80248324571 | +46 |
| 80908082573 | −20 |
| 100660783343 | +87 |
| 112825721339 | +70 |
| 231939720421 | +41 |
| 258818504023 | +4 |
| 260584487287 | −52 |
| 265784418461 | −78 |
| 298114694431 | +82 |
A prime satisfying thecongruence with small can be called anear-Wilson prime. Near-Wilson primes with are bona fide Wilson primes. The table on the right lists all such primes with from 106 up to 4×1011.[3]
AWilson number is a natural number such that, whereand where the term is positiveif and only if has aprimitive root and negative otherwise.[15] For every natural number, is divisible by, and the quotients (called generalizedWilson quotients) are listed in (sequenceA157249 in theOEIS). The Wilson numbers are
If a Wilson number is prime, then is a Wilson prime. There are 13 Wilson numbers up to 5×108.[16]