Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wilson prime

From Wikipedia, the free encyclopedia
Type of prime number
Wilson prime
Named afterJohn Wilson
No. of known terms3
First terms5,13,563
OEIS index

Innumber theory, aWilson prime is aprime numberp{\displaystyle p} such thatp2{\displaystyle p^{2}}divides(p1)!+1{\displaystyle (p-1)!+1}, where "!{\displaystyle !}" denotes thefactorial function; compare this withWilson's theorem, which states that every primep{\displaystyle p} divides(p1)!+1{\displaystyle (p-1)!+1}. Both are named for 18th-centuryEnglish mathematicianJohn Wilson; in 1770,Edward Waring credited the theorem to Wilson,[1] although it had been stated centuries earlier byIbn al-Haytham.[2]

The only known Wilson primes are5,13, and563 (sequenceA007540 in theOEIS). Costa et al. write that "the casep=5{\displaystyle p=5} is trivial", and credit the observation that 13 is a Wilson prime toMathews (1892).[3][4] Early work on these numbers included searches byN. G. W. H. Beeger andEmma Lehmer,[5][3][6] but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem.[3][7][8] If any others exist, they must be greater than 2 × 1013.[3] It has beenconjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval[x,y]{\displaystyle [x,y]} is aboutloglogxy{\displaystyle \log \log _{x}y}.[9]

Several computer searches have been done in the hope of finding new Wilson primes.[10][11][12]TheIbercivisdistributed computing project includes a search for Wilson primes.[13] Another search was coordinated at theGreat Internet Mersenne Prime Search forum.[14]

Generalizations

[edit]

Wilson primes of ordern

[edit]

Wilson's theorem can be expressed in general as(n1)!(pn)!(1)n modp{\displaystyle (n-1)!(p-n)!\equiv (-1)^{n}\ {\bmod {p}}} for everyintegern1{\displaystyle n\geq 1} and primepn{\displaystyle p\geq n}. Generalized Wilson primes of ordern are the primesp such thatp2{\displaystyle p^{2}} divides(n1)!(pn)!(1)n{\displaystyle (n-1)!(p-n)!-(-1)^{n}}.

It was conjectured that for everynatural numbern, there are infinitely many Wilson primes of ordern.

The smallest generalized Wilson primes of ordern{\displaystyle n} are:

5, 2, 7, 10429, 5, 11, 17, ... (The next term > 1.4 × 107) (sequenceA128666 in theOEIS)

Near-Wilson primes

[edit]
pB
1282279+20
1306817−30
1308491−55
1433813−32
1638347−45
1640147−88
1647931+14
1666403+99
1750901+34
1851953−50
2031053−18
2278343+21
2313083+15
2695933−73
3640753+69
3677071−32
3764437−99
3958621+75
5062469+39
5063803+40
6331519+91
6706067+45
7392257+40
8315831+3
8871167−85
9278443−75
9615329+27
9756727+23
10746881−7
11465149−62
11512541−26
11892977−7
12632117−27
12893203−53
14296621+2
16711069+95
16738091+58
17879887+63
19344553−93
19365641+75
20951477+25
20972977+58
21561013−90
23818681+23
27783521−51
27812887+21
29085907+9
29327513+13
30959321+24
33187157+60
33968041+12
39198017−7
45920923−63
51802061+4
53188379−54
56151923−1
57526411−66
64197799+13
72818227−27
87467099−2
91926437−32
92191909+94
93445061−30
93559087−3
94510219−69
101710369−70
111310567+22
117385529−43
176779259+56
212911781−92
216331463−36
253512533+25
282361201+24
327357841−62
411237857−84
479163953−50
757362197−28
824846833+60
866006431−81
1227886151−51
1527857939−19
1636804231+64
1686290297+18
1767839071+8
1913042311−65
1987272877+5
2100839597−34
2312420701−78
2476913683+94
3542985241−74
4036677373−5
4271431471+83
4296847931+41
5087988391+51
5127702389+50
7973760941+76
9965682053−18
10242692519−97
11355061259−45
11774118061−1
12896325149+86
13286279999+52
20042556601+27
21950810731+93
23607097193+97
24664241321+46
28737804211−58
35525054743+26
41659815553+55
42647052491+10
44034466379+39
60373446719−48
64643245189−21
66966581777+91
67133912011+9
80248324571+46
80908082573−20
100660783343+87
112825721339+70
231939720421+41
258818504023+4
260584487287−52
265784418461−78
298114694431+82

A primep{\displaystyle p} satisfying thecongruence(p1)!1+Bp (modp2){\displaystyle (p-1)!\equiv -1+Bp\ (\operatorname {mod} {p^{2}})} with small|B|{\displaystyle |B|} can be called anear-Wilson prime. Near-Wilson primes withB=0{\displaystyle B=0} are bona fide Wilson primes. The table on the right lists all such primes with|B|100{\displaystyle |B|\leq 100} from 106 up to 4×1011.[3]

Wilson numbers

[edit]

AWilson number is a natural numbern{\displaystyle n} such thatW(n)0 (modn2){\displaystyle W(n)\equiv 0\ (\operatorname {mod} {n^{2}})}, whereW(n)=±1+gcd(k,n)=11knk,{\displaystyle W(n)=\pm 1+\prod _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}{k},}and where the±1{\displaystyle \pm 1} term is positiveif and only ifn{\displaystyle n} has aprimitive root and negative otherwise.[15] For every natural numbern{\displaystyle n},W(n){\displaystyle W(n)} is divisible byn{\displaystyle n}, and the quotients (called generalizedWilson quotients) are listed in (sequenceA157249 in theOEIS). The Wilson numbers are

1, 5, 13, 563, 5971, 558771, 1964215, 8121909, 12326713, 23025711, 26921605, 341569806, 399292158, ... (sequenceA157250 in theOEIS)

If a Wilson numbern{\displaystyle n} is prime, thenn{\displaystyle n} is a Wilson prime. There are 13 Wilson numbers up to 5×108.[16]

See also

[edit]

References

[edit]
  1. ^Edward Waring,Meditationes Algebraicae (Cambridge, England: 1770), page 218 (in Latin). In the third (1782) edition of Waring'sMeditationes Algebraicae, Wilson's theorem appears as problem 5 onpage 380. On that page, Waring states: "Hanc maxime elegantem primorum numerorum proprietatem invenit vir clarissimus, rerumque mathematicarum peritissimus Joannes Wilson Armiger." (A man most illustrious and most skilled in mathematics, Squire John Wilson, found this most elegant property of prime numbers.)
  2. ^O'Connor, John J.;Robertson, Edmund F."Abu Ali al-Hasan ibn al-Haytham".MacTutor History of Mathematics Archive.University of St Andrews.
  3. ^abcdeCosta, Edgar; Gerbicz, Robert; Harvey, David (2014). "A search for Wilson primes".Mathematics of Computation.83 (290):3071–3091.arXiv:1209.3436.doi:10.1090/S0025-5718-2014-02800-7.MR 3246824.S2CID 6738476.
  4. ^Mathews, George Ballard (1892). "Example 15".Theory of Numbers, Part 1. Deighton & Bell. p. 318.
  5. ^Lehmer, Emma (April 1938)."On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson"(PDF).Annals of Mathematics.39 (2):350–360.doi:10.2307/1968791.JSTOR 1968791. Retrieved8 March 2011.
  6. ^Beeger, N. G. W. H. (1913–1914). "Quelques remarques sur les congruencesrp11 (modp2){\displaystyle r^{p-1}\equiv 1\ (\operatorname {mod} {p^{2}})} et(p1)!1 (modp2){\displaystyle (p-1)!\equiv -1\ (\operatorname {mod} {p^{2}})}".The Messenger of Mathematics.43:72–84.
  7. ^Wall, D. D. (October 1952)."Unpublished mathematical tables"(PDF).Mathematical Tables and Other Aids to Computation.6 (40): 238.doi:10.2307/2002270.JSTOR 2002270.
  8. ^Goldberg, Karl (1953). "A table of Wilson quotients and the third Wilson prime".J. London Math. Soc.28 (2):252–256.doi:10.1112/jlms/s1-28.2.252.
  9. ^The Prime Glossary: Wilson prime
  10. ^McIntosh, R. (9 March 2004)."WILSON STATUS (Feb. 1999)".E-Mail toPaul Zimmermann. Retrieved6 June 2011.
  11. ^Crandall, Richard E.; Dilcher, Karl; Pomerance, Carl (1997)."A search for Wieferich and Wilson primes".Math. Comput.66 (217):433–449.Bibcode:1997MaCom..66..433C.doi:10.1090/S0025-5718-97-00791-6. See p. 443.
  12. ^Ribenboim, P.; Keller, W. (2006).Die Welt der Primzahlen: Geheimnisse und Rekorde (in German). Berlin Heidelberg New York: Springer. p. 241.ISBN 978-3-540-34283-0.
  13. ^"Ibercivis site". Archived fromthe original on 2012-06-20. Retrieved2011-03-10.
  14. ^Distributed search for Wilson primesArchived 2020-03-18 at theWayback Machine (at mersenneforum.org)
  15. ^seeGauss's generalization of Wilson's theorem
  16. ^Agoh, Takashi; Dilcher, Karl;Skula, Ladislav (1998)."Wilson quotients for composite moduli"(PDF).Math. Comput.67 (222):843–861.Bibcode:1998MaCom..67..843A.doi:10.1090/S0025-5718-98-00951-X.

Further reading

[edit]

External links

[edit]


Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wilson_prime&oldid=1330718361"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp