Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wilks's lambda distribution

From Wikipedia, the free encyclopedia
Probability distribution used in multivariate hypothesis testing

Instatistics,Wilks' lambda distribution (named forSamuel S. Wilks), is aprobability distribution used inmultivariatehypothesis testing, especially with regard to thelikelihood-ratio test andmultivariate analysis of variance (MANOVA).

Definitions

[edit]

Wilks' lambda distribution is defined from twoindependentWishart distributed variables as theratio distribution of theirdeterminants,[1]

given

AWp(Σ,m)BWp(Σ,n){\displaystyle \mathbf {A} \sim W_{p}(\Sigma ,m)\qquad \mathbf {B} \sim W_{p}(\Sigma ,n)}

independent and withmp{\displaystyle m\geq p}

λ=det(A)det(A+B)=1det(I+A1B)Λ(p,m,n){\displaystyle \lambda ={\frac {\det(\mathbf {A} )}{\det(\mathbf {A+B} )}}={\frac {1}{\det(\mathbf {I} +\mathbf {A} ^{-1}\mathbf {B} )}}\sim \Lambda (p,m,n)}

wherep is the number of dimensions. In the context oflikelihood-ratio testsm is typically the error degrees of freedom, andn is the hypothesis degrees of freedom, so thatn+m{\displaystyle n+m} is the total degrees of freedom.[1]

Properties

[edit]

There is a symmetry among the parameters of the Wilks distribution,[1]

Λ(p,m,n)Λ(n,m+np,p){\displaystyle \Lambda (p,m,n)\sim \Lambda (n,m+n-p,p)}

Approximations

[edit]

Computations or tables of the Wilks' distribution for higher dimensions are not readily available and one usually resorts to approximations.One approximation is attributed toM. S. Bartlett and works for largem[2] allows Wilks' lambda to be approximated with achi-squared distribution

(pn+12m)logΛ(p,m,n)χnp2.{\displaystyle \left({\frac {p-n+1}{2}}-m\right)\log \Lambda (p,m,n)\sim \chi _{np}^{2}.}[1]

Another approximation is attributed toC. R. Rao.[1][3]

Related distributions

[edit]

The distribution can be related to a product ofindependentbeta-distributed random variables

uiB(m+ip2,p2){\displaystyle u_{i}\sim B\left({\frac {m+i-p}{2}},{\frac {p}{2}}\right)}
i=1nuiΛ(p,m,n).{\displaystyle \prod _{i=1}^{n}u_{i}\sim \Lambda (p,m,n).}

As such it can be regarded as a multivariate generalization of the beta distribution.

It follows directly that for a one-dimension problem, when the Wishart distributions are one-dimensional withp=1{\displaystyle p=1} (i.e., chi-squared-distributed), then the Wilks' distribution equals the beta-distribution with a certain parameter set,

Λ(1,m,n)B(m2,n2).{\displaystyle \Lambda (1,m,n)\sim B\left({\frac {m}{2}},{\frac {n}{2}}\right).}

From the relations between a beta and anF-distribution, Wilks' lambda can be related to the F-distribution when one of the parameters of the Wilks lambda distribution is either 1 or 2, e.g.,[1]

1Λ(p,m,1)Λ(p,m,1)pmp+1Fp,mp+1,{\displaystyle {\frac {1-\Lambda (p,m,1)}{\Lambda (p,m,1)}}\sim {\frac {p}{m-p+1}}F_{p,m-p+1},}

and

1Λ(p,m,2)Λ(p,m,2)pmp+1F2p,2(mp+1).{\displaystyle {\frac {1-{\sqrt {\Lambda (p,m,2)}}}{\sqrt {\Lambda (p,m,2)}}}\sim {\frac {p}{m-p+1}}F_{2p,2(m-p+1)}.}

See also

[edit]

References

[edit]
  1. ^abcdefKanti Mardia, John T. Kent and John Bibby (1979).Multivariate Analysis. Academic Press.ISBN 0-12-471250-9.
  2. ^M. S. Bartlett (1954). "A Note on the Multiplying Factors for Variousχ2{\displaystyle \chi ^{2}} Approximations".J R Stat Soc Ser B.16 (2):296–298.JSTOR 2984057.
  3. ^C. R. Rao (1951). "An Asymptotic Expansion of the Distribution of Wilks' Criterion".Bulletin de l'Institut International de Statistique.33:177–180.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wilks%27s_lambda_distribution&oldid=1260426290"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp