Cetacean stranding, commonly known asbeaching, is a phenomenon in whichwhales anddolphins strand themselves on land, usually on abeach. Beached whales often die due todehydration, collapsing under their own weight, or drowning when high tide covers theblowhole.[1]Cetacean stranding has occurred since beforerecorded history.[2]
Several explanations for why cetaceans strand themselves have been proposed, including changes in water temperatures,[3] peculiarities of whales'echolocation in certain surroundings,[4] and geomagnetic disturbances,[5] but none have so far been universally accepted as a definitive reason for the behavior. However, a link between the mass beaching ofbeaked whales and use of mid-frequency activesonar has been found.[6]
Whales that die due to stranding can subsequently decay and bloat to the point where they canexplode, causing gas and their internal organs to fly out.
Every year, up to 2,000 animals beach themselves.[7] Although the majority of strandings result in death, they pose no threat to any species as a whole. Only about tencetacean species frequently display mass beachings, with ten more rarely doing so.[citation needed]
All frequently-involved species aretoothed whales (Odontoceti), rather thanbaleen whales (Mysticeti). These species share some characteristics which may explain why they beach.
Body size does not normally affect the frequency, but both the animals' normal habitat and social organization do appear to influence their chances of coming ashore in large numbers. Odontocetes that normally inhabit deep waters and live in large, tightly knit groups are the most susceptible. This includes thesperm whale, oceanic dolphins, usuallypilot andOrcas, and a fewbeaked whale species. The most common species to strand in the United Kingdom is theharbour porpoise; the common dolphin (Delphinus delphis) is second-most common, and after that long-finned pilot whales (Globicephala melas).[8]
Solitary species naturally do not strand en masse. Cetaceans that spend most of their time in shallow, coastal waters almost never mass strand.
Strandings can be grouped into several types. The most obvious distinction is between single and multiple strandings. Many theories, some of them controversial, have been proposed to explain beaching, but the question remains unresolved.
Whales have beached throughout human history, with evidence of humans salvaging from strandedsperm whales in southern Spain during the UpperMagdalenian era some 14,000 years before the present.[2] Some strandings can be attributed to natural and environmental factors, such as rough weather, weakness due to old age or infection, difficulty giving birth,[9] hunting too close to shore, or navigation errors.
In 2004, scientists at theUniversity of Tasmania linked whale strandings and weather, hypothesizing that when coolAntarctic waters rich insquid andfish flow north, whales follow their prey closer towards land.[3] In some cases predators (such as killer whales) have been known to panic other whales, herding them towards the shoreline.[3]
Theirecholocation system can have difficulty picking up very gently-sloping coastlines.[10] This theory accounts for mass beaching hot spots such asOcean Beach, Tasmania andGeographe Bay,Western Australia where the slope is about half a degree (approximately 8 m [26 ft] deep one km [0.62 mi] out to sea). TheUniversity of Western AustraliaBioacoustics group proposes that repeated reflections between the surface and ocean bottom in gently sloping shallow water mayattenuate sound so much that the echo is inaudible to the whales.[4] Stirred up sand as well as long-lived microbubbles formed by rain may further exacerbate the effect.
A 2017 study by scientists fromGermany'sUniversity of Kiel suggests that large geomagnetic disruptions of theEarth's magnetic field, brought on throughsolar storms, could be another cause for whale beachings.[5] The authors hypothesize that whalesnavigate using the Earth's magnetic field by detecting differences in the field's strength to find their way. The solar storms causeanomalies in the field, which may disturb the whales' ability to navigate, sending them into shallow waters where they get trapped.[5] The study is based on the mass beachings of 29 sperm whales along the coasts of Germany, theNetherlands, theUK andFrance in 2016.[5]
Some strandings may be caused by larger cetaceans followingdolphins andporpoises into shallow coastal waters.[citation needed] The larger animals may habituate to following faster-moving dolphins. If they encounter an adverse combination oftidal flow andseabed topography, the larger species may become trapped.
Sometimes following a dolphin can help lead a whale out of danger: In 2008, a local dolphin was followed out to open water by twopygmy sperm whales that had become lost behind a sandbar atMahia Beach, New Zealand.[11]
Pods ofkiller whales – predators of dolphins and porpoises – very rarely strand. It might be that killer whales have learned to stay away from shallow waters, and that heading to the shallows offers the smaller animals some protection from predators. However, killer whales inPenínsula Valdés, Argentina, and theCrozet Islands in the Indian Oceanhave learned how to operate in shallow waters, particularly in their pursuit of seals. The killer whales regularly demonstrate their competence by chasing seals up shelving gravel beaches, up to the edge of the water. The pursuing whales are occasionally partially thrust out of the sea by a combination of their own impetus and retreating water, and have to wait for the next wave to re-float them and carry them back to sea.[12]
In Argentina, killer whales are known to hunt on the shore by intentionally beaching themselves and then lunging at nearby seals before riding the next wave safely back into deeper waters. This was first observed in the early 1970s, then hundreds times more since within this pod. This behavior seems to be taught from one generation to the next, evidenced by older individuals nudging juveniles towards the shore, and can sometimes also be a play activity.[12][13][14]
There is evidence thatactive sonar leads to beaching. On some occasions cetaceans have stranded shortly after military sonar was active in the area, suggesting a link.[6] Theories describing how sonar may cause whale deaths have also been advanced afternecropsies found internal injuries in stranded cetaceans. In contrast, some who strand themselves due to seemingly natural causes are usually healthy prior to beaching:
The low frequency active sonar (LFA sonar) used by the military to detect submarines is the loudest sound ever put into the seas. Yet the U.S. Navy is planning to deploy LFA sonar across 80 percent of the world ocean. At an amplitude of two hundred forty decibels, it is loud enough to kill whales and dolphins and has already caused mass strandings and deaths in areas where U.S. and/or NATO forces have conducted exercises.
— Whitty 2007, p. 50
The large and rapid pressure changes made by loud sonar can causehemorrhaging. Evidence emerged after 17 cetaceans were hauled out inthe Bahamas in March 2000 following aUnited States Navy sonar exercise. The Navy accepted blame agreeing that the dead whales experienced acoustically induced hemorrhages around the ears.[6] The resulting disorientation probably led to the stranding. Ken Balcomb, acetologist, specializes in thekiller whale populations that inhabit theStrait of Juan de Fuca betweenWashington andVancouver Island.[15] He investigated these beachings and argues that the powerful sonar pulsesresonated with airspaces in the dolphins, tearing tissue around the ears and brain.[16] Apparently not all species are affected by sonar.[17]
Another means by which sonar could be hurting cetaceans is a form ofdecompression sickness. This was first raised by necrological examinations of 14 beaked whales stranded in theCanary Islands. The stranding happened on 24 September 2002, close to the operating area of Neo Tapon, an international naval exercise, about four hours after the activation of mid-frequency sonar.[18] The team of scientists found acute tissue damage from gas-bubble lesions, which are indicative of decompression sickness.[18]
The precise mechanism of how sonar causes bubble formation is not known. It could be due to cetaceans panicking and surfacing too rapidly in an attempt to escape the sonar pulses. There is also a theoretical basis by which sonar vibrations can cause supersaturated gas tonucleate, forming bubbles, which are responsible for decompression sickness.[19]
The overwhelming majority of the cetaceans involved in sonar-associated beachings areCuvier's beaked whales (Ziphius cavirostrus). Individuals of this species strand frequently, but mass strandings are rare.
Cuvier's beaked whales are an open-ocean species that rarely approach the shore, making them difficult to study in the wild. Prior to the interest raised by the sonar controversy, most of the information about them came from stranded animals. The first to publish research linking beachings with naval activity were Simmonds and Lopez-Jurado in 1991. They noted that over the past decade there had been a number of mass strandings of beaked whales in the Canary Islands, and each time theSpanish Navy was conducting exercises. Conversely, there were no mass strandings at other times. They did not propose a theory for the strandings. Fernándezet al. in a 2013 letter toNature reported that there had been no further mass strandings in that area, following a 2004 ban by the Spanish government on military exercises in that region.[20]
In May 1996, there was another mass stranding in WestPeloponnese,Greece. At the time, it was noted as "atypical" both because mass strandings of beaked whales are rare, and also because the stranded whales were spread over such a long stretch of coast, with each individual whale spatially separated from the next stranding. At the time of the incident, there was no connection made with active sonar; A. Frantzis, the marine biologist investigating the incident, made the connection to sonar because he discovered a notice to mariners concerning the test. His report was published in March 1998.[21]
Peter Tyack, ofWoods Hole Oceanographic Institute, has been researching noise's effects on marine mammals since the 1970s. He has led much of the recent research on beaked whales (Cuvier's beaked whales in particular). Data tags have shown that Cuvier's dive considerably deeper than previously thought, and are in fact the deepest-diving species of marine mammal yet known.
At shallow depthsCuvier's stop vocalizing, either because of fear of predators, or because they don't need vocalization to track each other at shallow depths, where they have light adequate to see each other.
Their surfacing behavior is highly unusual, because they exert considerable physical effort to surface by a controlled ascent, rather than passively floating to the surface assperm whales do. Every deep dive is followed by three or four shallow dives. The elaborate dive patterns are assumed to be necessary to control the diffusion of gases in the bloodstream. No data show a beaked whale making an uncontrolled ascent, or failing to do successive shallow dives.[citation needed] This behavior suggests that theCuvier's are in a vulnerable state after a deep dive – presumably on the verge ofdecompression sickness – and require time and perhaps theshallower dives to recover.
De Quiróset al. (2019)[22] published a review of evidence on the mass strandings of beaked whale linked to naval exercises where sonar was used. It concluded that the effects of mid-frequency active sonar are strongest on Cuvier's beaked whales but vary among individuals or populations. The review suggested the strength of response of individual animals may depend on whether they had prior exposure to sonar, and that symptoms of decompression sickness have been found in stranded whales that may be a result of such response to sonar. It noted that no more mass strandings had occurred in the Canary Islands once naval exercises where sonar was used were banned, and recommended that the ban be extended to other areas where mass strandings continue to occur.[22][23]
![]() | This sectionneeds expansion. You can help byadding to it.(March 2025) |
The first detailed ecological study of the decomposition of a stranded whale was carried out with aminke whale (Balaenoptera acutorostrata) beached on the Dutch island ofRottumerplaat on 25 November 2020. The carcass was examined at regular intervals over the following two years, recording the scavengers and other species that used it.[24]
If a whale is beached near an inhabited locality, the rotting carcass can pose a nuisance as well as a health risk. Such very large carcasses are difficult to move. The whales are often towed back out to sea away from shipping lanes, allowing them to decompose naturally, or they are towed out to sea and blown up with explosives. Government-sanctioned explosions have occurred in South Africa, Iceland, Australia and United States.[25][26][27] If the carcass is older, it is buried.
In New Zealand, which is the site of many whale strandings, treaties with the indigenousMāori people allow the tribal gathering and customary (that is, traditional) use ofwhalebone from any animal which has died as a result of stranding. Whales are regarded astaonga (spiritual treasure), descendants of the ocean god,Tangaroa, and are as such held in very high respect. Sites of whale strandings and any whale carcasses from strandings are treated astapu sites, that is, they are regarded as sacred ground.[28]
A beached whale carcass should not be consumed. In 2002, fourteen Alaskans atemuktuk (whale blubber) from a beached whale, resulting in eight of them developingbotulism, with two of the affected requiringmechanical ventilation.[29] This is a possibility for any meat taken from an unpreserved carcass.
![]() |
This is a list of large cetacean strandings (200 or more).
Total | Deaths | Survived | Date | Incident | Location |
---|---|---|---|---|---|
1,000 | 1,000 | 0 | 1918 | Largest pilot whale stranding ever recorded.[30] | ![]() |
656 | 335 | 321 | 2017 | About 650 pilot whales beached themselves at the top of South Island, killing 335 of them. The others were able to swim away at high tide or were refloated by volunteers.[31][32][33] | ![]() |
500+ | 500+ | 0 | 1897 | More than 500 pilot whales died atTeal Inlet.[34] | ![]() |
470 | 362 | 108 | 2020 | About 270 pilot whales were found atMacquarie Heads on September 21, followed by the discovery of 200 dead whales two days later about 10 kilometers south, raising the total to 470. Only 108 were rescued.[35][36] | ![]() |
±300 | ±75 | ±225 | 1985 | Nearly 300 pilot whales ran aground on Great Barrier Island, killing about one-quarter of them. Local residents, who had received rescue lectures after a similar incident the previous year, helped rescue more than 200 whales at high tide.[37] | ![]() |
294 | 245 | 49+ | 1935 | Around 300 pilot whales were stranded atStanley, Tasmania.[38][39][40] The exact number of deaths or whales involved is unclear, with one newspaper reporting at least 245 confirmed deaths,[41] while another newspaper reported in 1936 that 70 whales escaped during high tide the day after the stranding.[42] | ![]() |
253 | 253 | 0 | 1978 | More than 250false killer whales stranded and died nearPukekohe.[43] | ![]() |
240 | 240 | 0 | 2022 | About 240 pilot whales beached themselves at Walhere Bay on Pitt Island, just 3 days after 240 pilot whales beached themselves at nearby Chatham Island.[44] | ![]() |
240 | 240 | 0 | 2022 | About 240 pilot whales beached themselves in the northwest of Chatham Island, just 3 days before 240 whales beached themselves at nearby Pitt Island.[44] | ![]() |
230 | 195 | 35 | 2022 | About 230 pilot whales beached themselves on the west coast of Tasmania, exactly two years to the day of another mass stranding in the same area.[45] | ![]() |
On June 23, 2015, 337 dead whales were discovered in a remotefjord inPatagonia, southernChile, the largest stranding ofbaleen whales to date.[46] Three hundred and five bodies and 32 skeletons were identified by aerial and satellite photography between theGulf of Penas andPuerto Natales, near the southern tip ofSouth America. They may have beensei whales.[47] This is one of only two or three such baleen mass stranding events in the last hundred years. It is highly unusual for baleen whales to strand other than singly, and these Patagonia strandings are tentatively attributed to an unusual cause such as ingestion of poisonous algae.
In November 2018, over 140 whales were witnessed stranded on a remote beach in New Zealand and had to be euthanised because of their declining health condition.[48] In July 2019, nearly 50 long-finned pilot whales were found stranded on Snaefellsnes Peninsula in Iceland. However, they were already dead when spotted.[49]
On the evening of November 2, 2020, over 100 short-finned pilot whales were stranded on thePanadura Beach in western coast ofSri Lanka.[50] Four deaths were reported, and all other whales were rescued.[51]
{{cite book}}
: CS1 maint: location missing publisher (link)