
Inradio-frequency engineering andcommunications engineering, awaveguide is a hollow metal pipe used to carryradio waves.[1] This type ofwaveguide is used as atransmission line mostly atmicrowave frequencies, for such purposes as connecting microwavetransmitters andreceivers to theirantennas, in equipment such asmicrowave ovens,radar sets,satellite communications, and microwave radio links.
Thegroup velocity of guidedelectromagnetic waves (EMW) is a fraction of thespeed of light.[2] Propagation in a (metal-pipe) waveguide may be imagined as a zig-zag path, with the EMW being repeatedly reflected between opposite walls of the guide. For the particular case ofrectangular waveguide, it is possible to base an exact analysis on this view. Propagation in a dielectric waveguide may be viewed in the same way, with the waves confined to the dielectric bytotal internal reflection at its surface. Some structures, such asnon-radiative dielectric waveguides and theGoubau line, use both metal walls and dielectric surfaces to confine the wave.

Depending on the frequency, waveguides can be constructed from either conductive ordielectric materials. Generally, the lower the frequency to be passed the larger the waveguide is. For example, the natural waveguide the earth forms given by the dimensions between the conductive ionosphere and the ground as well as the circumference at the median altitude of the Earth is resonant at 7.83 Hz. This is known asSchumann resonance. On the other hand, waveguides used inextremely high frequency (EHF) communications can be less than a millimeter in width.


During the 1890s, theorists did the first analyses of electromagnetic waves in ducts.[4] Around 1893,J. J. Thomson derived the electromagnetic modes inside a cylindrical metal cavity.[4] In 1897,Lord Rayleigh did a definitive analysis of waveguides; he solved theboundary value problem of electromagnetic waves propagating through both conducting tubes and dielectric rods of arbitrary shape.[4][5][6][7] He showed that the waves could travel without attenuation only in specificnormal modes with either theelectric field (TE modes) ormagnetic field (TM modes), perpendicular to the direction of propagation. He also showed each mode had acutoff frequency below which waves would not propagate. Since the cutoff wavelength for a given tube was of the same order as its width, it was clear that a hollow conducting tube could not carry radio wavelengths much larger than its diameter. In 1902, R. H. Weber observed that electromagnetic waves travel at a slower speed in tubes than in free space, and deduced the reason; that the waves travel in a "zigzag" path as they reflect from the walls.[4][6][8]
Prior to the 1920s, practical work on radio waves concentrated on the low frequency end of the radio spectrum, as these frequencies were better for long-range communication.[4] These were far below the frequencies that could propagate in even large waveguides, so there was little experimental work on waveguides during this period, although a few experiments were done. In a June 1, 1894, lecture, "The work of Hertz", before theRoyal Society,Oliver Lodge demonstrated the transmission of 3 inch radio waves from aspark gap through a short cylindrical copper duct.[4][9] In his pioneering 1894-1900 research on microwaves,Jagadish Chandra Bose used short lengths of pipe to conduct the waves, so some sources credit him with inventing the waveguide.[10] However, after this, the concept of radio waves being carried by a tube or duct passed out of engineering knowledge.[4]
During the 1920s, the first continuous sources of high frequency radio waves were developed: theBarkhausen–Kurz tube,[11] the first oscillator which could produce power atUHF frequencies; and thesplit-anode magnetron which by the 1930s had generated radio waves at up to 10 GHz.[4] These made possible the first systematic research on microwaves in the 1930s. It was discovered thattransmission lines used to carry lower frequency radio waves,parallel line andcoaxial cable, had excessive power losses at microwave frequencies, creating a need for a new transmission method.[4][11]
The waveguide was developed independently between 1932 and 1936 byGeorge C. Southworth atBell Telephone Laboratories[3] andWilmer L. Barrow at theMassachusetts Institute of Technology, who worked without knowledge of one another.[4][6][7][11] Southworth's interest was sparked during his 1920s doctoral work in which he measured thedielectric constant of water with a radio frequencyLecher line in a long tank of water. He found that if he removed the Lecher line, the tank of water still showed resonance peaks, indicating it was acting as adielectric waveguide.[4] At Bell Labs in 1931, he resumed work in dielectric waveguides. By March 1932, he observed waves in water-filled copper pipes. Rayleigh's previous work had been forgotten, andSergei A. Schelkunoff, a Bell Labs mathematician, did theoretical analyses of waveguides[4][12] and rediscovered waveguide modes. In December 1933 it was realized that with a metal sheath the dielectric is superfluous and attention shifted to metal waveguides.
Barrow had become interested in high frequencies in 1930 studying underArnold Sommerfeld in Germany.[4] At MIT beginning in 1932, he worked on high frequency antennas to generate narrow beams of radio waves to locate aircraft in fog. He invented ahorn antenna and hit on the idea of using a hollow pipe as a feedline to feed radio waves to the antenna.[4] By March 1936, he had derived the propagation modes and cutoff frequency in a rectangular waveguide.[11] The source he was using had a large wavelength of 40 cm, so for his first successful waveguide experiments he used a 16-foot section of air duct, 18 inches in diameter.[4]
Barrow and Southworth became aware of each other's work a few weeks before both were scheduled to present papers on waveguides to a combined meeting of theAmerican Physical Society and theInstitute of Radio Engineers in May 1936.[4][11] They amicably worked out credit sharing and patent division arrangements.
The development of centimeterradar during World War 2 and the first high power microwave tubes, theklystron (1938) and cavity magnetron (1940), resulted in the first widespread use of waveguides.[11] Standard waveguide plumbing-like components were manufactured, with flanges on the end which could be bolted together. In the 1960s, waveguides became common in commercial microwave systems, such as airport radar andmicrowave relay networks which were built to transmit telephone calls and television programs between cities.



In themicrowave region of theelectromagnetic spectrum, a waveguide normally consists of a hollow metallic conductor. These waveguides can take the form of single conductors with or without a dielectric coating, e.g. theGoubau line and helical waveguides. Hollow waveguides must be one-half wavelength or more in diameter in order to support one or more transverse wave modes.
Waveguides may be filled with pressurized gas to inhibit arcing and preventmultipaction, allowing higher power transmission. Conversely, waveguides may be required to be evacuated as part of evacuated systems (e.g. electron beam systems).
Aslotted waveguide is generally used for radar and other similar applications. The waveguide serves as a feed path, and each slot is a separate radiator, thus forming an antenna. This structure has the capability of generating a radiation pattern to launch anelectromagnetic wave in a specific relatively narrow and controllable direction.
Aclosed waveguide is an electromagnetic waveguide (a) that is tubular, usually with a circular or rectangular cross section, (b) that has electrically conducting walls, (c) that may be hollow or filled with a dielectric material, (d) that can support a large number of discrete propagating modes, though only a few may be practical, (e) in which each discrete mode defines thepropagation constant for that mode, (f) in which thefield at any point is describable in terms of the supported modes, (g) in which there is noradiation field, and (h) in which discontinuities and bends may cause mode conversion but not radiation.[citation needed]
The dimensions of a hollow metallic waveguide determine which wavelengths it can support, and in which modes. Typically, the waveguide is operated so that only a single mode is present. The lowest order mode possible is generally selected. Frequencies below the guide's cutoff frequency will not propagate. It is possible to operate waveguides at higher order modes, or with multiple modes present, but this is usually impractical.
Waveguides are almost exclusively made of metal and mostly rigid structures. There are certain types of "corrugated" waveguides that have the ability to flex and bend but only used where essential since they degrade propagation properties. Due to propagation of energy in mostly air or space within the waveguide, it is one of the lowest loss transmission line types and highly preferred for high frequency applications where most other types of transmission structures introduce large losses. Due to theskin effect at high frequencies, electric current along the walls penetrates typically only a fewmicrometers into the metal of the inner surface. Since this is where most of the resistive loss occurs, it is important that the conductivity of interior surface be kept as high as possible. For this reason, most waveguide interior surfaces are plated withcopper,silver, orgold.
Voltage standing wave ratio (VSWR) measurements may be taken to ensure that a waveguide is contiguous and has no leaks or sharp bends. If such bends or holes in the waveguide surface are present, this may diminish the performance of both transmitter and receiver equipment connected at either end. Poor transmission through the waveguide may also occur as a result of moisture build up which corrodes and degrades conductivity of the inner surfaces, which is crucial for low loss propagation. For this reason, waveguides are nominally fitted withmicrowave windows at the outer end that will not interfere with propagation but keep the elements out. Moisture can also causefungus build up or arcing in high power systems such as radio or radar transmitters. Moisture in waveguides can typically be prevented withsilica gel, adesiccant, or slight pressurization of the waveguide cavities with drynitrogen orargon. Desiccant silica gel canisters may be attached with screw-on nibs and higher power systems will have pressurized tanks for maintaining pressure including leakage monitors. Arcing may also occur if there is a hole, tear or bump in the conducting walls, if transmitting at high power (usually 200 watts or more). Waveguide plumbing[13] is crucial for proper waveguide performance. Voltage standing waves occur when impedance mismatches in the waveguide cause energy to reflect back in the opposite direction of propagation. In addition to limiting the effective transfer of energy, these reflections can cause higher voltages in the waveguide and damage equipment.
In practice, waveguides act as the equivalent of cables forsuper high frequency (SHF) systems. For such applications, it is desired to operate waveguides with only one mode propagating through the waveguide. With rectangular waveguides, it is possible to design the waveguide such that the frequency band over which only one mode propagates is as high as 2:1 (i.e. the ratio of the upper band edge to lower band edge is two). The relation between the waveguide dimensions and the lowest frequency is simple: if is the greater of its two dimensions, then the longest wavelength that will propagate is and the lowest frequency is thus
With circular waveguides, the highest possible bandwidth allowing only a single mode to propagate is only 1.3601:1.[14]
Because rectangular waveguides have a much larger bandwidth over which only a single mode can propagate, standards exist for rectangular waveguides, but not for circular waveguides. In general (but not always), standard waveguides are designed such that
The first condition is to allow for applications near band edges. The second condition limitsdispersion, a phenomenon in which the velocity of propagation is a function of frequency. It also limits the loss per unit length. The third condition is to avoidevanescent-wave coupling via higher order modes. The fourth condition is that which allows a 2:1 operation bandwidth. Although it is possible to have a 2:1 operating bandwidth when the height is less than half the width, having the height exactly half the width maximizes the power that can propagate inside the waveguide beforedielectric breakdown occurs.
Below is a table of standard waveguides. The waveguide nameWR stands forwaveguide rectangular, and the number is the inner dimension width of the waveguide in hundredths of aninch (0.01 inch = 0.254 mm) rounded to the nearest hundredth of an inch.
| Standard sizes of rectangular waveguide | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Waveguide name | Frequency band name | Recommended frequency band of operation (GHz) | Cutoff frequency (GHz) of | Inner dimensions of waveguide opening | |||||
| lowest order mode | next mode | ||||||||
| IEEE | EIA | RCSC * | IEC | (inch) | (mm) | ||||
| WR2300 | WG0.0 | R3 | 0.32 — 0.45 | 0.257 | 0.513 | 23.000 × 11.500 | 584.20 × 292.10 | ||
| WR2100 | WG0 | R4 | 0.35 — 0.50 | 0.281 | 0.562 | 21.000 × 10.500 | 533.40 × 266.7 | ||
| WR1800 | WG1 | R5 | 0.45 — 0.63 | 0.328 | 0.656 | 18.000 × 9.000 | 457.20 × 228.6 | ||
| WR1500 | WG2 | R6 | 0.50 — 0.75 | 0.393 | 0.787 | 15.000 × 7.500 | 381.00 × 190.5 | ||
| WR1150 | WG3 | R8 | 0.63 — 0.97 | 0.513 | 1.026 | 11.500 × 5.750 | 292.10 × 146.5 | ||
| WR975 | WG4 | R9 | 0.75 — 1.15 | 0.605 | 1.211 | 9.750 × 4.875 | 247.7 × 123.8 | ||
| WR770 | WG5 | R12 | 0.97 — 1.45 | 0.766 | 1.533 | 7.700 × 3.850 | 195,6 × 97.79 | ||
| WR650 | WG6 | R14 | L band (part) | 1.15 — 1.72 | 0.908 | 1.816 | 6.500 × 3.250 | 165.1 × 82.55 | |
| WR510 | WG7 | R18 | 1.45 — 2.20 | 1.157 | 2.314 | 5.100 × 2.550 | 129.5 × 64.77 | ||
| WR430 | WG8 | R22 | 1.72 — 2.60 | 1.372 | 2.745 | 4.300 × 2.150 | 109.2 × 54.61 | ||
| WR340 | WG9A | R26 | S band (part) | 2.20 — 3.30 | 1.736 | 3.471 | 3.400 × 1.700 | 86.36 × 43.18 | |
| WR284 | WG10 | R32 | S band (part) | 2.60 — 3.95 | 2.078 | 4.156 | 2.840 × 1.340 † | 72.14 × 34.94 | |
| WR229 | WG11A | R40 | C band (part) | 3.30 — 4.90 | 2.577 | 5.154 | 2.290 × 1.145 | 58.17 × 29.08 | |
| WR187 | WG12 | R48 | C band (part) | 3.95 — 5.85 | 3.153 | 6.305 | 1.872 × 0.872 † | 47.55 × 22.2 | |
| WR159 | WG13 | R58 | C band (part) | 4.90 — 7.05 | 3.712 | 7.423 | 1.590 × 0.795 | 40.38 × 20.2 | |
| WR137 | WG14 | R70 | C band (part) | 5.85 — 8.20 | 4.301 | 8.603 | 1.372 × 0.622 † | 34.90 × 15.8 | |
| WR112 | WG15 | R84 | — | 7.05 — 10.0 | 5.260 | 10.520 | 1.122 × 0.497 † | 28.50 × 12.6 | |
| WR90 | WG16 | R100 | X band | 8.2 — 12.4 | 6.557 | 13.114 | 0.900 × 0.400 † | 22.9 × 10.2 | |
| WR75 | WG17 | R120 | — | 10.0 — 15.0 | 7.869 | 15.737 | 0.750 × 0.375 | 19.1 × 9.53 | |
| WR62 | WG18 | R140 | Ku band | 12.4 — 18.0 | 9.488 | 18.976 | 0.622 × 0.311 | 15.8 × 7.90 | |
| WR51 | WG19 | R180 | — | 15 — 22 | 11.572 | 23.143 | 0.510 × 0.255 | 13.0 × 6.48 | |
| WR42 | WG20 | R220 | K band | 18 — 26.5 | 14.051 | 28.102 | 0.420 × 0.170 † | 10.7 × 4.32 | |
| WR34 | WG21 | R260 | — | 22 — 33 | 17.357 | 34.715 | 0.340 × 0.170 | 8.64 × 4.32 | |
| WR28 | WG22 | R320 | Ka band | 26.5 — 40 | 21.077 | 42.154 | 0.280 × 0.140 | 7.11 × 3.56 | |
| WR22 | WG23 | R400 | Q band | 33 — 50 | 26.346 | 52.692 | 0.224 × 0.112 | 5.68 × 2.84 | |
| WR19 | WG24 | R500 | U band | 40 — 60 | 31.391 | 62.782 | 0.188 × 0.094 | 4.78 × 2.39 | |
| WR15 | WG25 | R620 | V band | 50 — 75 | 39.875 | 79.750 | 0.148 × 0.074 | 3.76 × 1.88 | |
| WR12 | WG26 | R740 | E band | 60 — 90 | 48.373 | 96.746 | 0.122 × 0.061 | 3.10 × 1.55 | |
| WR10 | WG27 | R900 | W band | 75 — 110 | 59.015 | 118.030 | 0.100 × 0.050 | 2.54 × 1.27 | |
| WR8 | WG28 | R1200 | F band | 90 — 140 | 73.768 | 147.536 | 0.080 × 0.040 | 2.03 × 1.02 | |
| WR6 WR7 WR6.5 | WG29 | R1400 | D band | 110 — 170 | 90.791 | 181.583 | 0.0650 × 0.0325 | 1.65 × 0.826 | |
| WM-1295[16] | WR 5**[16] | WG30 | R 1.8k[16] | G band | 140 — 220 | 115.714 | 231.429 | 0.0510 × 0.0255 | 1.30 × 0.648 |
| WM-1092[16] | WR 4**[16] | WG31 | R 2.2k[16] | 170 — 260 | 137.243 | 274.485 | 0.0430 × 0.0215 | 1.09 × 0.546 | |
| WM-864[16] | WR 3**[16] | WG32 | R 2.6k[16] | H band | 220 — 330 | 173.571 | 347.143 | 0.0340 × 0.0170 | 0.864 × 0.432 |
| WM-710[16] | R 3.2k[16] | 260 — 400 | 211.121 | 422.243 | 0.02795 × 0.01398 | 0.71 × 0.355 | |||
| WM-570[16] | R 4k[16] | 325 — 500 | 262.975 | 525.951 | 0.02244 × 0.01122 | 0.57 × 0.285 | |||
| WM-470[16] | R 5k[16] | 400 — 600 | 318.928 | 637.856 | 0.01850 × 0.009252 | 0.47 × 0.235 | |||
| WM-380[16] | R 6.2k[16] | 500 — 750 | 394.463 | 788.927 | 0.01496 × 0.007480 | 0.38 × 0.19 | |||
| WM-310[16] | R 7.4k[16] | 600 — 900 | 483.536 | 967.072 | 0.01220 × 0.006102 | 0.31 × 0.155 | |||
| WM-250[16] | R 9k[16] | 750 — 1100 | 599.584 | 1199.2 | 0.009843 × 0.004921 | 0.25 × 0.125[16] | |||
| WM-200[16] | R 12k[16] | 900 — 1400[16] | 749.48[16] | 0.200 x 0.100[16] | |||||
| WM-164[16] | R 14k[16] | 1100 — 1700[16] | 914.0[16] | 0.164 x 0.082[16] | |||||
| WM-130[16] | R 18k[16] | 1400 — 2200[16] | 1153.0[16] | 0.130 x 0.065[16] | |||||
| WM-106[16] | R 22k[16] | 1700 — 2600[16] | 1414.1[16] | 0.106 x 0.053[16] | |||||
| WM-86[16] | R 26k[16] | 2200 — 3300[16] | 1743.0[16] | 0.086 x 0.043[16] | |||||
| (WM-71)[16] | 2600 — 4000[16] | 2111.2[16] | 0.071 x 0.0355[16] | ||||||
| (WM-57)[16] | 3300 — 5000[16] | 2629.8[16] | 0.057 x 0.0285[16] | ||||||
For the frequencies in the table above, the main advantage of waveguides overcoaxial cables is that waveguides support propagation with lower loss. For lower frequencies, the waveguide dimensions become impractically large, and for higher frequencies, the dimensions become impractically small (the manufacturing tolerance becomes a significant portion of the waveguide size).
Electromagnetic waveguides are analyzed by solvingMaxwell's equations, or their reduced form, theelectromagnetic wave equation, withboundary conditions determined by the properties of the materials and their interfaces. These equations have multiple solutions, or modes, which areeigenfunctions of the equation system. Each mode is characterized by a cutoff frequency below which the mode cannot exist in the guide. Waveguide propagation modes depend on the operatingwavelength andpolarization and the shape and size of the guide. Thelongitudinal mode of a waveguide is a particularstanding wave pattern formed by waves confined in the cavity. Thetransverse modes are classified into different types:
Waveguides with certain symmetries may be solved using the method ofseparation of variables. Rectangular wave guides may be solved in rectangular coordinates.[18]: 143 Round waveguides may be solved in cylindrical coordinates.[18]: 198
In hollow, single conductor waveguides, TEM waves are not possible. This contrasts with two-conductortransmission lines used at lower frequencies;coaxial cable,parallel wire line andstripline, in which TEM mode is possible. Additionally, the propagating modes (i.e. TE and TM) inside the waveguide can be mathematically expressed as the superposition of two TEM waves.[19]
The mode with the lowest cutoff frequency is termed thedominant mode of the guide. It is common to choose the size of the guide such that only this one mode can exist in the frequency band of operation. In rectangular and circular (hollow pipe) waveguides, the dominant modes are designated the TE1,0 mode and TE1,1 modes respectively.[20]
Adielectric waveguide employs a solid dielectric rod rather than a hollow pipe. Anoptical fibre is a dielectric guide designed to work at optical frequencies. Transmission lines such asmicrostrip,coplanar waveguide,stripline orcoaxial cable may also be considered to be waveguides.
Dielectric rod and slab waveguides are used to conduct radio waves, mostly atmillimeter wave frequencies and above.[21][22] These confine the radio waves bytotal internal reflection from the step inrefractive index due to the change in dielectric constant at the material surface.[23] At millimeter wave frequencies and above, metal is not a good conductor, so metal waveguides can have increasing attenuation. At these wavelengths dielectric waveguides can have lower losses than metal waveguides. Optical fibre is a form of dielectric waveguide used at optical wavelengths.
One difference between dielectric and metal waveguides is that at a metal surface the electromagnetic waves are tightly confined; at high frequencies the electric and magnetic fields penetrate a very short distance into the metal. In contrast, the surface of the dielectric waveguide is an interface between two dielectrics, so the fields of the wave penetrate outside the dielectric in the form of anevanescent (non-propagating) wave.[23]
{{citation}}:ISBN / Date incompatibility (help)