Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wolff–Parkinson–White syndrome

From Wikipedia, the free encyclopedia
(Redirected fromWPW)
Abnormal heart rhythm due to faulty electrical connections in the heart
Medical condition
Wolff–Parkinson–White syndrome
Other namesWPW pattern, Ventricular pre-excitation with arrhythmia, auriculoventricular accessory pathway syndrome[1][2]
Conduction through the accessory pathway results in a delta wave.
A characteristic "delta wave" (arrow) seen in a person with Wolff–Parkinson–White syndrome. Note the shortPR interval.
SpecialtyCardiology
SymptomsAbnormally fast heartbeat,palpitations,shortness of breath, lightheadedness,loss of consciousness[1][2]
ComplicationsCardiomyopathy,stroke,sudden cardiac death[2]
Usual onsetBirth[1]
CausesAccessory pathway in the heart[1]
Diagnostic methodElectrocardiogram shows a shortPR interval and a wideQRS complex from a delta wave[3]
TreatmentWatchful waiting, medications,radiofrequency catheter ablation[4][5]
PrognosisWithout symptoms 0.5% (children), 0.1% (adults) risk of death per year[5]
Frequency0.2%[1]

Wolff–Parkinson–White syndrome (WPWS) is a disorder due to a specific type of problem with theelectrical system of theheart involving anaccessory pathway able to conduct electrical current between theatria and theventricles, thus bypassing theatrioventricular node.[2][3] About 60% of people with the electrical problem develop symptoms,[5] which may include anabnormally fast heartbeat,palpitations,shortness of breath,lightheadedness, orsyncope.[1] Rarely,cardiac arrest may occur.[1] The most common type ofirregular heartbeat that occurs is known asparoxysmal supraventricular tachycardia.[1]

The cause of WPW is typically unknown and is likely due to a combination of chance and genetic factors.[2] A small number of cases are due to amutation of thePRKAG2 gene which may beinherited in anautosomal dominant fashion.[2] The underlying mechanism involves anaccessory electrical conduction pathway between theatria and theventricles.[1] It is associated with other conditions such asEbstein anomaly andhypokalemic periodic paralysis.[1] The diagnosis of WPW occurs with a combination of palpitations and when anelectrocardiogram (ECG) show a shortPR interval and a delta wave.[3] It is a type ofpre-excitation syndrome.[3]

WPW syndrome may be monitored or treated with either medications or an ablation (destroying the tissues) such as withradiofrequency catheter ablation.[4] It affects between 0.1 and 0.3% in the population.[1] The risk of death in those without symptoms is about 0.5% per year in children and 0.1% per year in adults.[5] In some cases, non-invasive monitoring may help to more carefully risk stratify patients into a lower risk category.[6] In those without symptoms ongoing observation may be reasonable.[5] In those with WPW complicated byatrial fibrillation,cardioversion or the medicationprocainamide may be used.[7] The condition is named afterLouis Wolff,John Parkinson, andPaul Dudley White who described the ECG findings in 1930.[3]

Signs and symptoms

[edit]

People with WPW are usually asymptomatic when not having a fast heart rate. However, individuals may experiencepalpitations,dizziness,shortness of breath, or infrequentlysyncope (fainting or near fainting) during episodes ofsupraventricular tachycardia. WPW is also associated with a very small risk of sudden death due to more dangerous heart rhythm disturbances.[8]

Pathophysiology

[edit]
Graphic representation of theelectrical conduction system of the human heart
Transmission of acardiac action potential through the conduction system of the normal human heart

Electrical activity in the normal human heart begins when acardiac action potential arises in thesinoatrial (SA) node, which is located in theright atrium. From there, the electrical stimulus is transmitted via internodal pathways to theatrioventricular (AV) node. After a brief delay at the AV node, the stimulus travels through thebundle of His to the left and right bundle branches and then to thePurkinje fibers and theendocardium at the apex of the heart, then finally to the ventricularmyocardium.[citation needed]

The AV node serves an important function as a "gatekeeper", limiting the electrical activity that reaches the ventricles. In situations where the atria generate excessively rapid electrical activity (such asatrial fibrillation oratrial flutter), the AV node limits the number of signals conducted to the ventricles. For example, if the atria are electrically activated at 300 beats per minute, half those electrical impulses may be blocked by the AV node, so that the ventricles are stimulated at only 150 beats per minute – resulting in apulse of 150 beats per minute. Another important property of the AV node is that it slows down individual electrical impulses. This is manifested on the electrocardiogram as thePR interval (the time fromelectrical activation of the atria toelectrical activation of the ventricles), which is usually shortened to less than 120milliseconds in duration.[citation needed]

Individuals with WPW have an accessory pathway that communicates between the atria and the ventricles, in addition to the AV node.[6] This accessory pathway is known as the bundle of Kent. This accessory pathway does not share the rate-slowing properties of the AV node and may conduct electrical activity at a significantly higher rate than the AV node. For instance, in the example above, if an individual had an atrial rate of 300 beats per minute, the accessory bundle may conduct all the electrical impulses from the atria to the ventricles, causing the ventricles to contract at 300 beats per minute. Extremely rapid heart rates such as this may result in hemodynamic instability orcardiogenic shock. In some cases, the combination of an accessory pathway andabnormal heart rhythms can triggerventricular fibrillation, a leading cause of sudden cardiac death.[citation needed]

WPW may be associated withPRKAG2, aprotein kinaseenzyme encoded by thePRKAG2gene.[9]

Bundle of Kent

[edit]
Graphic representation of thebundle of Kent in Wolff–Parkinson–White syndrome

The bundle of Kent is an abnormal extra oraccessory conduction pathway between the atria and ventricles that is present in a small percentage (between 0.1 and 0.3%) of the general population.[10][11][12] This pathway may communicate between the left atrium and the left ventricle, in which case it is termed a "type A pre-excitation", or between the right atrium and the right ventricle, in which case it is termed a "type B pre-excitation" in old, currently abandoned classification.[13] Problems arise when this pathway creates anelectrical circuit that bypasses the AV node. The AV node is capable of slowing the rate of conduction of electrical impulses to the ventricles, whereas the bundle of Kent lacks this capability. When anaberrant electrical connection is made via the bundle of Kent, tachydysrhythmias may therefore result.[citation needed]

Diagnosis

[edit]
One beat from a rhythm strip inV2 demonstrating characteristic findings in Wolff–Parkinson–White syndrome. A characteristic delta wave (above the blue bar), a short PR interval (red bar) of 80 ms, and a long QRS complex (blue bar plus green bar) at 120 ms are visible.

WPW is commonly diagnosed on the basis of the electrocardiogram in an asymptomatic individual. In this case, it is manifested as a delta wave, which is a slurred upstroke in the QRS complex that is associated with a short PR interval. The short PR interval and slurring of the QRS complex are reflective of the impulse making it to the ventricles early (via the accessory pathway) without the usual delay experienced in the AV node.[citation needed]

If a person with WPW experiences episodes of atrial fibrillation, the ECG shows a rapid polymorphic wide-complex tachycardia (withouttorsades de pointes). This combination of atrial fibrillation and WPW is considered dangerous, and most antiarrhythmic drugs are contraindicated.[citation needed]

When an individual is in normalsinus rhythm, the ECG characteristics of WPW are a short PR interval (less than 120 milliseconds in duration), widened QRS complex (greater than 120 milliseconds in duration) with slurred upstroke of the QRS complex, and secondary repolarization changes (reflected inST segment-T wave changes).[citation needed]

In individuals with WPW, electrical activity that is initiated in the SA node travels through the accessory pathway, as well as through the AV node to activate the ventricles via both pathways. Since the accessory pathway does not have the impulse slowing properties of the AV node, the electrical impulse first activates the ventricles via the accessory pathway, and immediately afterwards via the AV node. This gives the short PR interval and slurred upstroke of the QRS complex known as the delta wave.[citation needed]

In case of type A pre-excitation (left atrioventricular connections), a positive R wave is seen in V1 ("positive delta") on the precordial leads of the electrocardiogram, while in type B pre-excitation (right atrioventricular connections), a predominantly negative delta wave is seen in lead V1 ("negative delta").[13]

People with WPW may have more than one accessory pathway – in some cases, as many as eight abnormal pathways have been found. This has been seen in individuals withEbstein's anomaly.[14]

Wolff–Parkinson–White syndrome is sometimes associated withLeber's hereditary optic neuropathy, a form ofmitochondrial disease.[15]

Risk stratification

[edit]
12 leadelectrocardiogram of an individual with Wolff–Parkinson–White syndrome

WPW carries a small risk of sudden death, presumably due to rapidly conducted atrial fibrillation causing ventricular fibrillation. While the overall risk is approximately 2.4 per 1000 person years, the risk in an individual is dependent on the properties of the accessory pathway causing pre-excitation.[8]

A higher risk accessory pathway may be suggested by a history of syncope, but risk stratification is best performed by assessing how frequently a pathway can conduct impulse to the ventricles, usually viaprogrammed electrical stimulation (PES) in thecardiac electrophysiology laboratory. This is an invasive but generally low-risk procedure during which the atria are stimulated to try to induce tachycardia. If a tachycardia involving the accessory pathway can be triggered, the cardiologist can then assess how rapidly the accessory pathway is able to conduct. The faster it can conduct, the higher the likelihood the accessory pathway can conduct fast enough to trigger a lethal tachycardia.[citation needed]

High-risk features that may be present during PES include an effective refractory period of the accessory pathway less than 250 ms, multiple pathways, septal location of pathway, and inducibility of supraventricular tachycardia (AVRT, atrial fibrillation). Individuals with any of these high-risk features are generally considered at increased risk for SCD or symptomatic tachycardia, and should be treated accordingly (i.e.: catheter ablation).[16]

It is unclear whether invasive risk stratification (with PES) is necessary in the asymptomatic individual.[17] While some groups advocate PES for risk stratification in all individuals under 35 years old, others only offer it to individuals who have history suggestive of a tachydysrhythmia, since the incidence of sudden cardiac death is so low (less than 0.6% in some reports).[12][18][19]

Other methods of risk stratification include observing the ventricular rate during spontaneous atrial fibrillation on a 12-lead ECG. RR intervals of less than 250 ms suggest a higher risk pathway. During exercise testing, abrupt loss of pre-excitation as heart rate increases also suggest a lower risk pathway.[8] However, this approach is hampered by the normal improvement in AV node conduction during exercise which can also mask pre-excitation despite ongoing conduction down the accessory pathway.[20]

Treatment

[edit]

According to theACLS protocol, people with WPW who are experiencing rapid abnormal heart rhythms (tachydysrhythmias) may require synchronized electricalcardioversion if they are demonstrating severe signs or symptoms (for example,low blood pressure or lethargy withaltered mental status). If they are relatively stable, medication may be used.[21]

Medications

[edit]

WPW pattern with hemodynamically stability and orthodromic AVRT leading to a regular narrow complex tachycardia may be managed similarly to other regular narrow complex supraventricular tachycardias: first withvagal maneuvers followed by a trial of adenosine (first-line therapy). The 2015 ACC/AHA/HRS guidelines recommend beta-blockers or calcium channel blockers as second-line agents, electric cardioversion is reserved for refractory arrhythmias. However, if there is any doubt about the diagnosis of orthodromic AVRT or if aberrant conduction leading to a wide complex QRS is observed, it may be prudent to manage as undifferentiated wide complex tachycardia.[22]

People with atrial fibrillation and rapid ventricular response may be treated withamiodarone[7] orprocainamide[23] to stabilize their heart rate. Procainamide and cardioversion are accepted treatments for conversion of tachycardia found with WPW.[24] Amiodarone in atrial fibrillation with WPW, is linked to ventricular fibrillation, and thus may be worse than procainamide.[7]

AV node blockers should be avoided in atrial fibrillation and atrial flutter with WPW or history of it; this includesadenosine,diltiazem,verapamil, othercalcium channel blockers, andbeta blockers.[25] They can exacerbate the syndrome by blocking the heart's normal electrical pathway (therefore favoring 1:1 atrial to ventricle conduction through the pre-excitation pathway, potentially leading to unstable ventricular arrhythmias).[22]

Catheter ablation

[edit]

The definitive treatment of WPW is the destruction of the abnormal electrical pathway bycatheter ablation. Two main types of catheter ablation include radiofrequency ablation with heat or cryoablation with cold energy.[6] This procedure is performed bycardiac electrophysiologists and has high success rate in the hands of an experienced electrophysiologist.[26] Findings from 1994 indicate success rates of as high as 95% in people treated with radiofrequency catheter ablation for WPW.[27] If radiofrequency catheter ablation is successfully performed, the condition is generally considered cured. Recurrence rates are typically less than 5% after a successful ablation.[26] Some patients, such as the ones with underlyingEbstein's anomaly and inheritedcardiomyopathies, may have multiple accessory pathways.[28]

History

[edit]

The bundle of Kent is eponymously named for British physiologistAlbert Frank Stanley Kent (1863–1958), who described lateral branches in the atrioventricular groove of the monkey heart (erroneously believing these constituted the normal atrioventricular conduction system).[29][30]

In 1915,Frank Norman Wilson (1890–1952) became the first to describe the condition later called Wolff–Parkinson–White syndrome.[31] Alfred M. Wedd (1887–1967) was the next to describe the condition in 1921.[32]CardiologistsLouis Wolff (1898–1972),John Parkinson (1885–1976) andPaul Dudley White (1886–1973) are credited with the definitive description of the disorder in 1930.[33]

Notable cases

[edit]

See also

[edit]

References

[edit]
  1. ^abcdefghijk"Wolff-Parkinson-White syndrome".Genetics Home Reference. U.S. National Library of Medicine. March 2017.Archived from the original on 27 April 2017. Retrieved30 April 2017.
  2. ^abcdef"Wolff-Parkinson-White syndrome".rarediseases.info.nih.gov. 31 December 2012.Archived from the original on 21 April 2017. Retrieved30 April 2017.
  3. ^abcdeBhatia A, Sra J, Akhtar M (March 2016). "Preexcitation Syndromes".Current Problems in Cardiology.41 (3):99–137.doi:10.1016/j.cpcardiol.2015.11.002.PMID 26897561.
  4. ^abLiu A, Pusalkar P (June 2011)."Asymptomatic Wolff-Parkinson-White syndrome: incidental ECG diagnosis and a review of literature regarding current treatment".BMJ Case Reports.2011: bcr0520114192.doi:10.1136/bcr.05.2011.4192.PMC 3128358.PMID 22693197.
  5. ^abcdeKim SS, Knight BP (May 2017). "Long term risk of Wolff-Parkinson-White pattern and syndrome".Trends in Cardiovascular Medicine.27 (4):260–268.doi:10.1016/j.tcm.2016.12.001.PMID 28108086.
  6. ^abc"Wolff-Parkinson-White Syndrome Clinic".UWHealthkids.org. University of Wisconsin Hospitals and Clinics. 29 March 2019. Archived fromthe original on 30 November 2020. Retrieved22 March 2021.
  7. ^abcSimonian SM, Lotfipour S, Wall C, Langdorf MI (October 2010)."Challenging the superiority of amiodarone for rate control in Wolff-Parkinson-White and atrial fibrillation".Internal and Emergency Medicine.5 (5):421–426.doi:10.1007/s11739-010-0385-6.PMID 20437113.S2CID 25283602.
  8. ^abcBrugada J, Katritsis DG, Arbelo E, Arribas F, Bax JJ, Blomström-Lundqvist C, et al. (February 2020)."2019 ESC Guidelines for the management of patients with supraventricular tachycardiaThe Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC)".European Heart Journal.41 (5):655–720.doi:10.1093/eurheartj/ehz467.hdl:1887/3232621.PMID 31504425.
  9. ^Gollob MH (January 2008). "Modulating phenotypic expression of the PRKAG2 cardiac syndrome".Circulation.117 (2):134–135.doi:10.1161/CIRCULATIONAHA.107.747345.PMID 18195183.S2CID 7581082.
  10. ^Rosner MH, Brady WJ, Kefer MP, Martin ML (November 1999). "Electrocardiography in the patient with the Wolff-Parkinson-White syndrome: diagnostic and initial therapeutic issues".The American Journal of Emergency Medicine.17 (7):705–714.doi:10.1016/S0735-6757(99)90167-5.PMID 10597097.
  11. ^Sorbo MD, Buja GF, Miorelli M, Nistri S, Perrone C, Manca S, et al. (June 1995). "[The prevalence of the Wolff-Parkinson-White syndrome in a population of 116,542 young males]".Giornale Italiano di Cardiologia (in Italian).25 (6):681–687.PMID 7649416.
  12. ^abMunger TM, Packer DL, Hammill SC, Feldman BJ, Bailey KR, Ballard DJ, et al. (March 1993)."A population study of the natural history of Wolff-Parkinson-White syndrome in Olmsted County, Minnesota, 1953-1989".Circulation.87 (3):866–873.doi:10.1161/01.CIR.87.3.866.PMID 8443907.
  13. ^ab"Atrial and Ventricular Depolarization Changes".americanheart.org. 24 November 2008. Archived fromthe original on 17 September 2010.
  14. ^"Ebstein's Anomaly".The Lecturio Medical Concept Library. Retrieved25 August 2021.
  15. ^Mashima Y, Kigasawa K, Hasegawa H, Tani M, Oguchi Y (December 1996). "High incidence of pre-excitation syndrome in Japanese families with Leber's hereditary optic neuropathy".Clinical Genetics.50 (6):535–537.doi:10.1111/j.1399-0004.1996.tb02732.x.PMID 9147893.S2CID 11057255.
  16. ^Pappone C, Santinelli V, Manguso F, Augello G, Santinelli O, Vicedomini G, et al. (November 2003)."A randomized study of prophylactic catheter ablation in asymptomatic patients with the Wolff-Parkinson-White syndrome".The New England Journal of Medicine.349 (19):1803–1811.doi:10.1056/NEJMoa035345.PMID 14602878.
  17. ^Campbell RM, Strieper MJ, Frias PA, Collins KK, Van Hare GF, Dubin AM (March 2003)."Survey of current practice of pediatric electrophysiologists for asymptomatic Wolff-Parkinson-White syndrome".Pediatrics.111 (3):e245 –e247.doi:10.1542/peds.111.3.e245.PMID 12612279.Archived from the original on 2011-01-30.
  18. ^Fitzsimmons PJ, McWhirter PD, Peterson DW, Kruyer WB (September 2001)."The natural history of Wolff-Parkinson-White syndrome in 228 military aviators: a long-term follow-up of 22 years".American Heart Journal.142 (3):530–536.doi:10.1067/mhj.2001.117779.PMID 11526369.
  19. ^Kenyon J (24 November 2014)."Wolff–Parkinson–White Syndrome and the Risk of Sudden Cardiac Death".Doctors Lounge Website.Archived from the original on 2010-10-10. Retrieved2010-10-07.
  20. ^Josephson ME (2015).Josephson's clinical cardiac electrophysiology : techniques and interpretations (Fifth ed.). Baltimore, MD: Wolters Kluwer.ISBN 978-1-4963-2661-4.OCLC 938434294.[page needed]
  21. ^Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ, et al. (April 2016)."2015 ACC/AHA/HRS Guideline for the Management of Adult Patients With Supraventricular Tachycardia: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society".Circulation.133 (14):e506 –e574.doi:10.1161/CIR.0000000000000311.PMID 26399663.
  22. ^abChhabra L, Goyal A, Benham MD (August 2022)."Wolff Parkinson White Syndrome".StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.PMID 32119324. Retrieved15 February 2022.
  23. ^Fengler BT, Brady WJ, Plautz CU (June 2007). "Atrial fibrillation in the Wolff-Parkinson-White syndrome: ECG recognition and treatment in the ED".The American Journal of Emergency Medicine.25 (5):576–583.doi:10.1016/j.ajem.2006.10.017.PMID 17543664.
  24. ^Ritchie JV, Juliano ML, Thurman RJ."23: ECG Abnormalities". In Knoop KJ, Stack LB, Storrow AB, Thurman RJ (eds.).The Atlas of Emergency Medicine, 3e.
  25. ^Wald DA (2009)."Resuscitation". In Lex J (ed.).Emergency Medicine Q&A (3rd ed.). McGraw–Hill. p. 4.ISBN 978-0-7216-5944-2.
  26. ^abPappone C, Lamberti F, Santomauro M, Stabile G, De Simone A, Turco P, et al. (December 1993). "[Ablation of paroxysmal tachycardia in Wolff-Parkinson-White syndrome]".Cardiologia (in Italian).38 (12 Suppl 1):189–197.PMID 8020017.
  27. ^Thakur RK, Klein GJ, Yee R (September 1994)."Radiofrequency catheter ablation in patients with Wolff-Parkinson-White syndrome".CMAJ.151 (6):771–776.PMC 1337132.PMID 8087753.
  28. ^Zachariah JP, Walsh EP, Triedman JK, Berul CI, Cecchin F, Alexander ME, Bevilacqua LM (January 2013)."Multiple accessory pathways in the young: the impact of structural heart disease".American Heart Journal.165 (1):87–92.doi:10.1016/j.ahj.2012.10.025.PMC 3523339.PMID 23237138.
  29. ^Kent AF (May 1893)."Researches on the Structure and Function of the Mammalian Heart".The Journal of Physiology.14 (4–5): i2-254.doi:10.1113/jphysiol.1893.sp000451.PMC 1514401.PMID 16992052.
  30. ^Kent AF (1914). "A conducting path between the right auricle and the external wall of the right ventricle in the heart of the mammal".Journal of Physiology.48: 57.
  31. ^Wilson FN (1915)."A case in which the vagus influenced the form of the ventricular complex of the electrocardiogram".Archives of Internal Medicine.16 (6):1008–27.doi:10.1001/archinte.1915.00080060120009.
  32. ^Wedd AM (1921). "Paroxysmal tachycardia, with reference to nomotropic tachycardia and the role of the extrinsic cardiac nerves".Archives of Internal Medicine.27 (5):571–90.doi:10.1001/archinte.1921.00100110056003.
  33. ^Wolff L, Parkinson J, White PD (1930). "Bundle-branch block with short P-R interval in healthy young people prone to paroxysmal tachyardia".American Heart Journal.5 (6):685–704.doi:10.1016/S0002-8703(30)90086-5.
  34. ^"Aldridge out with Wolff–Parkinson–White Syndrome".ESPN.com. Associated Press. 2007-04-10.Archived from the original on 2012-11-05. Retrieved2007-04-10.
  35. ^Hedegaard E (19 August 2010)."Michael Cera: Nerdchild in the Promised Land".Rolling Stone.Archived from the original on 27 February 2015. Retrieved11 March 2015.
  36. ^"Heart Surgery, Foot Injuries, a Demotion to Backup—Max Duggan Overcame Them All".Texas Monthly. 2 December 2022. Retrieved2022-12-09.
  37. ^Landsberger S (April 17, 2008)."Courageous dog all heart". Archived fromthe original on December 22, 2008. Retrieved2008-04-17.
  38. ^ab"By The Way, in conversation with Jeff Garlin podcast episode #5". Archived fromthe original on 2013-03-11.
  39. ^Werner B (October 15, 2016)."Quentin Groves, ex-Jaguars draft pick out of Auburn, passes away at 32".FOX Sports.Archived from the original on October 16, 2016.
  40. ^O'Regan JJ (2013-03-22)."Dan Hardy "has wolf heart"".Fighters Only. Archived fromthe original on 2013-03-23. Retrieved2013-05-10.
  41. ^"Alicia Hoskinn".Events and Medals, Biographical Information. International Olympic Committee (IOC). Archived fromthe original on 2021-08-05. Retrieved2021-08-13.
  42. ^Annie D. (November 21, 2014)."Jessie J Shares Battle With Heart Disease".International Business Times.Archived from the original on July 1, 2015.
  43. ^Lannak E."Wolff Parkinson White Cardiac Ailment".Living Healthy 360. Archived from the original on 2014-07-02. Retrieved2014-12-05.
  44. ^"Meat Loaf recalls stage collapse".BBC News. 2003-11-28.Archived from the original on 2009-01-11. Retrieved2007-04-17.
  45. ^Cessna R (8 October 2004)."Texas A&M defense gets the full Monty".aggiesports.com. Archived fromthe original on 2015-04-02. Retrieved2015-03-27.
  46. ^Robinson J (2007-05-24)."Montel Vontavious Porter talks Benoit, his outfit, and catching on fire".MVP Interview. IGN.Archived from the original on 2007-10-13. Retrieved2007-10-06.
  47. ^Chere R (2008-09-25)."New Jersey Devils' Rupp has been in teammate Tallackson's shoes".NJ.com.Archived from the original on 2008-12-05. Retrieved2008-11-21.

External links

[edit]
Classification
External resources
Ischemia
Coronary disease
Active ischemia
Sequelae
Layers
Pericardium
Myocardium
Endocardium /
valves
Endocarditis
Valves
Conduction /
arrhythmia
Bradycardia
Tachycardia
(paroxysmal andsinus)
Supraventricular
Ventricular
Premature contraction
Pre-excitation syndrome
Flutter /fibrillation
Pacemaker
Long QT syndrome
Cardiac arrest
Other / ungrouped
Cardiomegaly
Other
Deficiencies of intracellular signaling peptides and proteins
GTP-binding protein regulators
GTPase-activating protein
Guanine nucleotide
exchange factor
G protein
Heterotrimeic
Monomeric
MAP kinase
Otherkinase/phosphatase
Tyrosine kinase
Serine/threonine
kinase
Tyrosine
phosphatase
Signal transducing adaptor proteins
Other
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wolff–Parkinson–White_syndrome&oldid=1279497989"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp