Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Virtual displacement

From Wikipedia, the free encyclopedia
Displacement in analytical mechanics
One degree of freedom.
Two degrees of freedom.
Constraint forceC and virtual displacementδr for a particle of massm confined to a curve. The resultant non-constraint force isN. The components of virtual displacement are related by a constraint equation.

Inanalytical mechanics, a branch ofapplied mathematics andphysics, avirtual displacement (orinfinitesimal variation)δγ{\displaystyle \delta \gamma } shows how the mechanical system's trajectory canhypothetically (hence the termvirtual) deviate very slightly from the actual trajectoryγ{\displaystyle \gamma } of the system without violating the system's constraints.[1][2][3]: 263  For every time instantt,{\displaystyle t,}δγ(t){\displaystyle \delta \gamma (t)} is a vectortangential to theconfiguration space at the pointγ(t).{\displaystyle \gamma (t).} The vectorsδγ(t){\displaystyle \delta \gamma (t)} show the directions in whichγ(t){\displaystyle \gamma (t)} can "go" without breaking the constraints.

For example, the virtual displacements of the system consisting of a single particle on a two-dimensional surface fill up the entire tangent plane, assuming there are no additional constraints.

If, however, the constraints require that all the trajectoriesγ{\displaystyle \gamma } pass through the given pointq{\displaystyle \mathbf {q} } at the given timeτ,{\displaystyle \tau ,} i.e.γ(τ)=q,{\displaystyle \gamma (\tau )=\mathbf {q} ,} thenδγ(τ)=0.{\displaystyle \delta \gamma (\tau )=0.}

Notations

[edit]

LetM{\displaystyle M} be theconfiguration space of the mechanical system,t0,t1R{\displaystyle t_{0},t_{1}\in \mathbb {R} } be time instants,q0,q1M,{\displaystyle q_{0},q_{1}\in M,}C[t0,t1]{\displaystyle C^{\infty }[t_{0},t_{1}]} consists ofsmooth functions on[t0,t1]{\displaystyle [t_{0},t_{1}]}, and

P(M)={γC([t0,t1],M)γ(t0)=q0, γ(t1)=q1}.{\displaystyle P(M)=\{\gamma \in C^{\infty }([t_{0},t_{1}],M)\mid \gamma (t_{0})=q_{0},\ \gamma (t_{1})=q_{1}\}.}

The constraintsγ(t0)=q0,{\displaystyle \gamma (t_{0})=q_{0},}γ(t1)=q1{\displaystyle \gamma (t_{1})=q_{1}} are here for illustration only. In practice, for each individual system, an individual set of constraints is required.

Definition

[edit]

For each pathγP(M){\displaystyle \gamma \in P(M)} andϵ0>0,{\displaystyle \epsilon _{0}>0,} avariation ofγ{\displaystyle \gamma } is a smooth functionΓ:[t0,t1]×[ϵ0,ϵ0]M{\displaystyle \Gamma :[t_{0},t_{1}]\times [-\epsilon _{0},\epsilon _{0}]\to M} such that, for everyϵ[ϵ0,ϵ0],{\displaystyle \epsilon \in [-\epsilon _{0},\epsilon _{0}],}Γ(,ϵ)P(M){\displaystyle \Gamma (\cdot ,\epsilon )\in P(M)} andΓ(t,0)=γ(t).{\displaystyle \Gamma (t,0)=\gamma (t).} Thevirtual displacementδγ:[t0,t1]TM{\displaystyle \delta \gamma :[t_{0},t_{1}]\to TM}(TM{\displaystyle (TM} being thetangent bundle ofM){\displaystyle M)} corresponding to the variationΓ{\displaystyle \Gamma } assigns[1] to everyt[t0,t1]{\displaystyle t\in [t_{0},t_{1}]} thetangent vector

δγ(t)=dΓ(t,ϵ)dϵ|ϵ=0Tγ(t)M.{\displaystyle \delta \gamma (t)=\left.{\frac {d\Gamma (t,\epsilon )}{d\epsilon }}\right|_{\epsilon =0}\in T_{\gamma (t)}M.}

In terms of thetangent map,

δγ(t)=Γt(ddϵ|ϵ=0).{\displaystyle \delta \gamma (t)=\Gamma _{*}^{t}\left(\left.{\frac {d}{d\epsilon }}\right|_{\epsilon =0}\right).}

HereΓt:T0[ϵ,ϵ]TΓ(t,0)M=Tγ(t)M{\displaystyle \Gamma _{*}^{t}:T_{0}[-\epsilon ,\epsilon ]\to T_{\Gamma (t,0)}M=T_{\gamma (t)}M} is the tangent map ofΓt:[ϵ,ϵ]M,{\displaystyle \Gamma ^{t}:[-\epsilon ,\epsilon ]\to M,} whereΓt(ϵ)=Γ(t,ϵ),{\displaystyle \Gamma ^{t}(\epsilon )=\Gamma (t,\epsilon ),} andddϵ|ϵ=0T0[ϵ,ϵ].{\displaystyle \textstyle {\frac {d}{d\epsilon }}{\Bigl |}_{\epsilon =0}\in T_{0}[-\epsilon ,\epsilon ].}

Properties

[edit]

Examples

[edit]

Free particle in R3

[edit]

A single particle freely moving inR3{\displaystyle \mathbb {R} ^{3}} has 3 degrees of freedom. The configuration space isM=R3,{\displaystyle M=\mathbb {R} ^{3},} andP(M)=C([t0,t1],M).{\displaystyle P(M)=C^{\infty }([t_{0},t_{1}],M).} For every pathγP(M){\displaystyle \gamma \in P(M)} and a variationΓ(t,ϵ){\displaystyle \Gamma (t,\epsilon )} ofγ,{\displaystyle \gamma ,} there exists a uniqueσT0R3{\displaystyle \sigma \in T_{0}\mathbb {R} ^{3}} such thatΓ(t,ϵ)=γ(t)+σ(t)ϵ+o(ϵ),{\displaystyle \Gamma (t,\epsilon )=\gamma (t)+\sigma (t)\epsilon +o(\epsilon ),} asϵ0.{\displaystyle \epsilon \to 0.}By the definition,

δγ(t)=(ddϵ(γ(t)+σ(t)ϵ+o(ϵ)))|ϵ=0{\displaystyle \delta \gamma (t)=\left.\left({\frac {d}{d\epsilon }}{\Bigl (}\gamma (t)+\sigma (t)\epsilon +o(\epsilon ){\Bigr )}\right)\right|_{\epsilon =0}}

which leads to

δγ(t)=σ(t)Tγ(t)R3.{\displaystyle \delta \gamma (t)=\sigma (t)\in T_{\gamma (t)}\mathbb {R} ^{3}.}

Free particles on a surface

[edit]

N{\displaystyle N} particles moving freely on a two-dimensional surfaceSR3{\displaystyle S\subset \mathbb {R} ^{3}} have2N{\displaystyle 2N} degree of freedom. The configuration space here is

M={(r1,,rN)R3NriR3; rirj if ij},{\displaystyle M=\{(\mathbf {r} _{1},\ldots ,\mathbf {r} _{N})\in \mathbb {R} ^{3\,N}\mid \mathbf {r} _{i}\in \mathbb {R} ^{3};\ \mathbf {r} _{i}\neq \mathbf {r} _{j}\ {\text{if}}\ i\neq j\},}

whereriR3{\displaystyle \mathbf {r} _{i}\in \mathbb {R} ^{3}} is the radius vector of theith{\displaystyle i^{\text{th}}} particle. It follows that

T(r1,,rN)M=Tr1STrNS,{\displaystyle T_{(\mathbf {r} _{1},\ldots ,\mathbf {r} _{N})}M=T_{\mathbf {r} _{1}}S\oplus \ldots \oplus T_{\mathbf {r} _{N}}S,}

and every pathγP(M){\displaystyle \gamma \in P(M)} may be described using the radius vectorsri{\displaystyle \mathbf {r} _{i}} of each individual particle, i.e.

γ(t)=(r1(t),,rN(t)).{\displaystyle \gamma (t)=(\mathbf {r} _{1}(t),\ldots ,\mathbf {r} _{N}(t)).}

This implies that, for everyδγ(t)T(r1(t),,rN(t))M,{\displaystyle \delta \gamma (t)\in T_{(\mathbf {r} _{1}(t),\ldots ,\mathbf {r} _{N}(t))}M,}

δγ(t)=δr1(t)δrN(t),{\displaystyle \delta \gamma (t)=\delta \mathbf {r} _{1}(t)\oplus \ldots \oplus \delta \mathbf {r} _{N}(t),}

whereδri(t)Tri(t)S.{\displaystyle \delta \mathbf {r} _{i}(t)\in T_{\mathbf {r} _{i}(t)}S.} Some authors express this as

δγ=(δr1,,δrN).{\displaystyle \delta \gamma =(\delta \mathbf {r} _{1},\ldots ,\delta \mathbf {r} _{N}).}

Rigid body rotating around fixed point

[edit]

Arigid body rotating around a fixed point with no additional constraints has 3 degrees of freedom. The configuration space here isM=SO(3),{\displaystyle M=SO(3),} thespecial orthogonal group of dimension 3 (otherwise known as3D rotation group), andP(M)=C([t0,t1],M).{\displaystyle P(M)=C^{\infty }([t_{0},t_{1}],M).} We use the standard notationso(3){\displaystyle {\mathfrak {so}}(3)} to refer to the three-dimensional linear space of allskew-symmetric three-dimensional matrices. Theexponential mapexp:so(3)SO(3){\displaystyle \exp :{\mathfrak {so}}(3)\to SO(3)} guarantees the existence ofϵ0>0{\displaystyle \epsilon _{0}>0} such that, for every pathγP(M),{\displaystyle \gamma \in P(M),} its variationΓ(t,ϵ),{\displaystyle \Gamma (t,\epsilon ),} andt[t0,t1],{\displaystyle t\in [t_{0},t_{1}],} there is a unique pathΘtC([ϵ0,ϵ0],so(3)){\displaystyle \Theta ^{t}\in C^{\infty }([-\epsilon _{0},\epsilon _{0}],{\mathfrak {so}}(3))} such thatΘt(0)=0{\displaystyle \Theta ^{t}(0)=0} and, for everyϵ[ϵ0,ϵ0],{\displaystyle \epsilon \in [-\epsilon _{0},\epsilon _{0}],}Γ(t,ϵ)=γ(t)exp(Θt(ϵ)).{\displaystyle \Gamma (t,\epsilon )=\gamma (t)\exp(\Theta ^{t}(\epsilon )).} By the definition,

δγ(t)=(ddϵ(γ(t)exp(Θt(ϵ))))|ϵ=0=γ(t)dΘt(ϵ)dϵ|ϵ=0.{\displaystyle \delta \gamma (t)=\left.\left({\frac {d}{d\epsilon }}{\Bigl (}\gamma (t)\exp(\Theta ^{t}(\epsilon )){\Bigr )}\right)\right|_{\epsilon =0}=\gamma (t)\left.{\frac {d\Theta ^{t}(\epsilon )}{d\epsilon }}\right|_{\epsilon =0}.}

Since, for some functionσ:[t0,t1]so(3),{\displaystyle \sigma :[t_{0},t_{1}]\to {\mathfrak {so}}(3),}Θt(ϵ)=ϵσ(t)+o(ϵ){\displaystyle \Theta ^{t}(\epsilon )=\epsilon \sigma (t)+o(\epsilon )}, asϵ0{\displaystyle \epsilon \to 0},

δγ(t)=γ(t)σ(t)Tγ(t)SO(3).{\displaystyle \delta \gamma (t)=\gamma (t)\sigma (t)\in T_{\gamma (t)}\mathrm {SO} (3).}

See also

[edit]

References

[edit]
  1. ^abTakhtajan, Leon A. (2017). "Part 1. Classical Mechanics".Classical Field Theory(PDF). Department of Mathematics, Stony Brook University, Stony Brook, NY.
  2. ^Goldstein, H.;Poole, C. P.; Safko, J. L. (2001).Classical Mechanics (3rd ed.). Addison-Wesley. p. 16.ISBN 978-0-201-65702-9.
  3. ^Torby, Bruce (1984). "Energy Methods".Advanced Dynamics for Engineers. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing.ISBN 0-03-063366-4.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Virtual_displacement&oldid=1316375991"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp