Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vaidya metric

From Wikipedia, the free encyclopedia
Exact spherically symmetric solution in GR
General relativity
Spacetime curvature schematic

Ingeneral relativity, theVaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbingnull dusts. It is named after the Indian physicistPrahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiativeSchwarzschild solution toEinstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

From Schwarzschild to Vaidya metrics

[edit]

The Schwarzschild metric as the static and spherically symmetric solution to Einstein's equation reads

ds2=(12Mr)dt2+(12Mr)1dr2+r2(dθ2+sin2θdϕ2).{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)dt^{2}+\left(1-{\frac {2M}{r}}\right)^{-1}dr^{2}+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right).}1

To remove the coordinate singularity of this metric atr=2M{\displaystyle r=2M}, one could switch to theEddington–Finkelstein coordinates. Thus, introduce the "retarded(/outgoing)" null coordinateu{\displaystyle u} by

t=u+r+2Mln(r2M1)dt=du+(12Mr)1dr,{\displaystyle t=u+r+2M\ln \left({\frac {r}{2M}}-1\right)\qquad \Rightarrow \quad dt=du+\left(1-{\frac {2M}{r}}\right)^{-1}dr\;,}2

and Eq(1) could be transformed into the "retarded(/outgoing) Schwarzschild metric"

ds2=(12Mr)du22dudr+r2(dθ2+sin2θdϕ2);{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)du^{2}-2dudr+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right);}3

or, we could instead employ the "advanced(/ingoing)" null coordinatev{\displaystyle v} by

t=vr2Mln(r2M1)dt=dv(12Mr)1dr,{\displaystyle t=v-r-2M\ln \left({\frac {r}{2M}}-1\right)\qquad \Rightarrow \quad dt=dv-\left(1-{\frac {2M}{r}}\right)^{-1}dr\;,}4

so Eq(1) becomes the "advanced(/ingoing) Schwarzschild metric"

ds2=(12Mr)dv2+2dvdr+r2(dθ2+sin2θdϕ2).{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)dv^{2}+2dvdr+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right).}5

Eq(3) and Eq(5), as static and spherically symmetric solutions, are valid for both ordinary celestial objects with finite radii and singular objects such asblack holes. It turns out that, it is still physically reasonable if one extends the mass parameterM{\displaystyle M} in Eqs(3) and Eq(5) from a constant to functions of the corresponding null coordinate,M(u){\displaystyle M(u)} andM(v){\displaystyle M(v)} respectively, thus

ds2=(12M(u)r)du22dudr+r2(dθ2+ sin2θdϕ2),{\displaystyle ds^{2}=-\left(1-{\frac {2M(u)}{r}}\right)du^{2}-2dudr+r^{2}\left(d\theta ^{2}+\ sin^{2}\theta \,d\phi ^{2}\right),}6
ds2=(12M(v)r)dv2+2dvdr+r2(dθ2+sin2θdϕ2).{\displaystyle ds^{2}=-\left(1-{\frac {2M(v)}{r}}\right)dv^{2}+2dvdr+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right).}7

The extended metrics Eq(6) and Eq(7) are respectively the "retarded(/outgoing)" and "advanced(/ingoing)" Vaidya metrics.[1][2] It is also sometimes useful to recast the Vaidya metrics Eqs(6)(7) into the form

ds2=2M(u)rdu2+ds2(flat)=2M(v)rdv2+ds2(flat),{\displaystyle ds^{2}={\frac {2M(u)}{r}}du^{2}+ds^{2}({\text{flat}})={\frac {2M(v)}{r}}dv^{2}+ds^{2}({\text{flat}})\,,}8

whereds2(flat){\displaystyle ds^{2}({\text{flat}})} represents the metric offlat spacetime:ds2(flat)=du22dudr+r2(dθ2+sin2θdϕ2)=dv2+2dvdr+r2(dθ2+sin2θdϕ2)=dT2+dr2+r2(dθ2+sin2θdϕ2){\displaystyle {\begin{aligned}ds^{2}({\text{flat}})&=-du^{2}-2dudr+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right)\\&=-dv^{2}+2dvdr+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right)\\&=-dT^{2}+dr^{2}+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right)\end{aligned}}}usingT=t2Mln(r/2M1){\displaystyle T=t-2M\ln(r/2M-1)}.

Outgoing Vaidya with pure Emitting field

[edit]

As for the "retarded(/outgoing)" Vaidya metric Eq(6),[1][2][3][4][5] theRicci tensor has only one nonzero component

Ruu=2M(u),ur2,{\displaystyle R_{uu}=-2{\frac {M(u)_{,\,u}}{r^{2}}}\,,}9

while theRicci curvature scalar vanishes,R=gabRab=0{\displaystyle R=g^{ab}R_{ab}=0} becauseguu=0{\displaystyle g^{uu}=0}. Thus, according to the trace-free Einstein equationGab=Rab=8πTab{\displaystyle G_{ab}=R_{ab}=8\pi T_{ab}}, thestress–energy tensorTab{\displaystyle T_{ab}} satisfies

Tab=M(u),u4πr2lalb,ladxa=du,{\displaystyle T_{ab}=-{\frac {M(u)_{,\,u}}{4\pi r^{2}}}l_{a}l_{b}\;,\qquad l_{a}dx^{a}=-du\;,}10

wherela=au{\displaystyle l_{a}=-\partial _{a}u} andla=gablb{\displaystyle l^{a}=g^{ab}l_{b}} are null (co)vectors (c.f. Box A below). Thus,Tab{\displaystyle T_{ab}} is a "pure radiation field",[1][2] which has an energy density ofM(u),u4πr2{\textstyle -{\frac {M(u)_{,\,u}}{4\pi r^{2}}}}. According to the nullenergy conditions

Tabkakb0,{\displaystyle T_{ab}k^{a}k^{b}\geq 0\;,}11

we haveM(u),u<0{\displaystyle M(u)_{,\,u}<0} and thus the central body is emitting radiation.

Following the calculations usingNewman–Penrose (NP) formalism in Box A, the outgoing Vaidya spacetime Eq(6) is ofPetrov-type D, and the nonzero components of theWeyl-NP andRicci-NP scalars are

Ψ2=M(u)r3Φ22=M(u),ur2.{\displaystyle \Psi _{2}=-{\frac {M(u)}{r^{3}}}\qquad \Phi _{22}=-{\frac {M(u)_{\,,\,u}}{r^{2}}}\;.}12

It is notable that, the Vaidya field is a pure radiation field rather thanelectromagnetic fields. The emitted particles or energy-matter flows have zerorest mass and thus are generally called "null dusts", typically such as photons andneutrinos, but cannot be electromagnetic waves because the Maxwell-NP equations are not satisfied. By the way, the outgoing and ingoing null expansion rates for theline element Eq(6) are respectively

θ()=(ρ+ρ¯)=2r,θ(n)=μ+μ¯=r+2M(u)r2.{\displaystyle \theta _{(\ell )}=-(\rho +{\bar {\rho }})={\frac {2}{r}}\,,\quad \theta _{(n)}=\mu +{\bar {\mu }}={\frac {-r+2M(u)}{r^{2}}}\;.}13

SupposeF:=12M(u)r{\textstyle F:=1-{\frac {2M(u)}{r}}}, then the Lagrangian for null radialgeodesics(L=0,θ˙=0,ϕ˙=0){\displaystyle (L=0,{\dot {\theta }}=0,{\dot {\phi }}=0)} of the "retarded(/outgoing)" Vaidya spacetime Eq(6) isL=0=Fu˙2+2u˙r˙,{\displaystyle L=0=-F{\dot {u}}^{2}+2{\dot {u}}{\dot {r}}\,,}where dot means derivative with respect to some parameterλ{\displaystyle \lambda }. This Lagrangian has two solutions,u˙=0andr˙=F2u˙.{\displaystyle {\dot {u}}=0\quad {\text{and}}\quad {\dot {r}}={\frac {F}{2}}{\dot {u}}\;.}

According to the definition ofu{\displaystyle u} in Eq(2), one could find that whent{\displaystyle t} increases, the areal radiusr{\displaystyle r} would increase as well for the solutionu˙=0{\displaystyle {\dot {u}}=0}, whiler{\displaystyle r} would decrease for the solutionr˙=F2u˙{\textstyle {\dot {r}}={\frac {F}{2}}{\dot {u}}}. Thus,u˙=0{\displaystyle {\dot {u}}=0} should be recognized as an outgoing solution whiler˙=F2u˙{\textstyle {\dot {r}}={\frac {F}{2}}{\dot {u}}} serves as an ingoing solution. Now, we canconstruct a complex null tetrad which is adapted to the outgoing null radial geodesics and employ the Newman–Penrose formalism for perform a full analysis of the outgoing Vaidya spacetime. Such an outgoing adapted tetrad can be set up asla=(0,1,0,0),na=(1,F2,0,0),ma=12r(0,0,1,icscθ),{\displaystyle l^{a}=(0,1,0,0)\,,\quad n^{a}=\left(1,-{\frac {F}{2}},0,0\right)\,,\quad m^{a}={\frac {1}{{\sqrt {2}}\,r}}(0,0,1,i\,\csc \theta )\,,}and the dual basis covectors are thereforela=(1,0,0,0),na=(F2,1,0,0),ma=r2(0,0,1,sinθ).{\displaystyle l_{a}=(-1,0,0,0)\,,\quad n_{a}=\left(-{\frac {F}{2}},-1,0,0\right)\,,\quad m_{a}={\frac {r}{\sqrt {2}}}(0,0,1,\sin \theta )\,.}

In this null tetrad, the spin coefficients areκ=σ=τ=0,ν=λ=π=0,ε=0{\displaystyle \kappa =\sigma =\tau =0\,,\quad \nu =\lambda =\pi =0\,,\quad \varepsilon =0}ρ=1r,μ=r+2M(u)2r2,α=β=2cotθ4r,γ=M(u)2r2.{\displaystyle \rho =-{\frac {1}{r}}\,,\quad \mu ={\frac {-r+2M(u)}{2r^{2}}}\,,\quad \alpha =-\beta ={\frac {-{\sqrt {2}}\cot \theta }{4r}}\,,\quad \gamma ={\frac {M(u)}{2r^{2}}}\,.}

TheWeyl-NP and Ricci-NP scalars are given byΨ0=Ψ1=Ψ3=Ψ4=0,Ψ2=M(u)r3,{\displaystyle \Psi _{0}=\Psi _{1}=\Psi _{3}=\Psi _{4}=0\,,\quad \Psi _{2}=-{\frac {M(u)}{r^{3}}}\,,}Φ00=Φ10=Φ20=Φ11=Φ12=Λ=0,Φ22=M(u),ur2,{\displaystyle \Phi _{00}=\Phi _{10}=\Phi _{20}=\Phi _{11}=\Phi _{12}=\Lambda =0\,,\quad \Phi _{22}=-{\frac {M(u)_{\,,\,u}}{r^{2}}}\,,}

Since the only nonvanishing Weyl-NP scalar isΨ2{\displaystyle \Psi _{2}}, the "retarded(/outgoing)" Vaidya spacetime is of Petrov-type D. Also, there exists a radiation field asΦ220{\displaystyle \Phi _{22}\neq 0}.

For the "retarded(/outgoing)" Schwarzschild metric Eq(3), letG:=12Mr{\textstyle G:=1-{\frac {2M}{r}}}, and then the Lagrangian for null radial geodesics will have an outgoing solutionu˙=0{\displaystyle {\dot {u}}=0} and an ingoing solutionr˙=G2u˙{\textstyle {\dot {r}}=-{\frac {G}{2}}{\dot {u}}}. Similar to Box A, now set up the adapted outgoing tetrad byla=(0,1,0,0),na=(1,G2,0,0),ma=12r(0,0,1,icscθ),{\displaystyle l^{a}=(0,1,0,0)\,,\quad n^{a}=\left(1,-{\frac {G}{2}},0,0\right)\,,\quad m^{a}={\frac {1}{{\sqrt {2}}\,r}}(0,0,1,i\,\csc \theta )\,,}la=(1,0,0,0),na=(G2,1,0,0),ma=r2(0,0,1,sinθ).{\displaystyle l_{a}=(-1,0,0,0)\,,\quad n_{a}=\left(-{\frac {G}{2}},-1,0,0\right)\,,\quad m_{a}={\frac {r}{\sqrt {2}}}(0,0,1,\sin \theta )\,.}so the spin coefficients areκ=σ=τ=0,ν=λ=π=0,ε=0{\displaystyle \kappa =\sigma =\tau =0\,,\quad \nu =\lambda =\pi =0\,,\quad \varepsilon =0}ρ=1r,μ=r+2M2r2,α=β=2cotθ4r,γ=M2r2,{\displaystyle \rho =-{\frac {1}{r}}\,,\quad \mu ={\frac {-r+2M}{2r^{2}}}\,,\quad \alpha =-\beta ={\frac {-{\sqrt {2}}\cot \theta }{4r}}\,,\quad \gamma ={\frac {M}{2r^{2}}}\,,}and the Weyl-NP and Ricci-NP scalars are given byΨ0=Ψ1=Ψ3=Ψ4=0,Ψ2=Mr3,{\displaystyle \Psi _{0}=\Psi _{1}=\Psi _{3}=\Psi _{4}=0\,,\quad \Psi _{2}=-{\frac {M}{r^{3}}}\,,}Φ00=Φ10=Φ20=Φ11=Φ12=Φ22=Λ=0.{\displaystyle \Phi _{00}=\Phi _{10}=\Phi _{20}=\Phi _{11}=\Phi _{12}=\Phi _{22}=\Lambda =0\,.}

The "retarded(/outgoing)" Schwarzschild spacetime is of Petrov-type D withΨ2{\displaystyle \Psi _{2}} being the only nonvanishing Weyl-NP scalar.

Ingoing Vaidya with pure absorbing field

[edit]

As for the "advanced/ingoing" Vaidya metric Eq(7),[1][2][6] the Ricci tensors again have one nonzero component

Rvv=2M(v),vr2,{\displaystyle R_{vv}=2{\frac {M(v)_{,\,v}}{r^{2}}}\,,}14

and thereforeR=0{\displaystyle R=0} and the stress–energy tensor is

Tab=M(v),v4πr2nanb,nadxa=dv.{\displaystyle T_{ab}={\frac {M(v)_{,\,v}}{4\pi r^{2}}}\,n_{a}n_{b}\;,\qquad n_{a}dx^{a}=-dv\;.}15

This is a pure radiation field with energy densityM(v),v4πr2{\textstyle {\frac {M(v)_{,\,v}}{4\pi r^{2}}}}, and once again it follows from the null energy condition Eq(11) thatM(v),v>0{\displaystyle M(v)_{,\,v}>0}, so the central object is absorbing null dusts. As calculated in Box C, the nonzero Weyl-NP and Ricci-NP components of the "advanced/ingoing" Vaidya metric Eq(7) are

Ψ2=M(v)r3Φ00=M(v),vr2.{\displaystyle \Psi _{2}=-{\frac {M(v)}{r^{3}}}\qquad \Phi _{00}={\frac {M(v)_{\,,\,v}}{r^{2}}}\;.}16

Also, the outgoing and ingoing null expansion rates for the line element Eq(7) are respectively

θ()=(ρ+ρ¯)=r2M(v)r2,θ(n)=μ+μ¯=2r.{\displaystyle \theta _{(\ell )}=-(\rho +{\bar {\rho }})={\frac {r-2M(v)}{r^{2}}}\,,\quad \theta _{(n)}=\mu +{\bar {\mu }}=-{\frac {2}{r}}\;.}17

The advanced/ingoing Vaidya solution Eq(7) is especially useful in black-hole physics as it is one of the few existing exact dynamical solutions. For example, it is often employed to investigate the differences between different definitions of the dynamical black-hole boundaries, such as the classicalevent horizon and the quasilocal trapping horizon; and as shown by Eq(17), the evolutionary hypersurfacer=2M(v){\displaystyle r=2M(v)} is always a marginally outer trapped horizon (θ()=0,θ(n)<0{\displaystyle \theta _{(\ell )}=0\;,\theta _{(n)}<0}).

SupposeF~:=12M(v)r{\displaystyle {\tilde {F}}:=1-{\frac {2M(v)}{r}}}, then the Lagrangian for null radial geodesics of the "advanced(/ingoing)" Vaidya spacetime Eq(7) isL=F~v˙2+2v˙r˙,{\displaystyle L=-{\tilde {F}}{\dot {v}}^{2}+2{\dot {v}}{\dot {r}}\,,}which has an ingoing solutionv˙=0{\displaystyle {\dot {v}}=0} and an outgoing solutionr˙=F~2v˙{\textstyle {\dot {r}}={\frac {\tilde {F}}{2}}{\dot {v}}} in accordance with the definition ofv{\displaystyle v} in Eq(4). Now, we canconstruct a complex null tetrad which is adapted to the ingoing null radial geodesics and employ the Newman–Penrose formalism for perform a full analysis of the Vaidya spacetime. Such an ingoing adapted tetrad can be set up asla=(1,F~2,0,0),na=(0,1,0,0),ma=12r(0,0,1,icscθ),{\displaystyle l^{a}=\left(1,{\frac {\tilde {F}}{2}},0,0\right)\,,\quad n^{a}=(0,-1,0,0)\,,\quad m^{a}={\frac {1}{{\sqrt {2}}\,r}}(0,0,1,i\,\csc \theta )\,,}and the dual basis covectors are thereforela=(F~2,1,0,0),na=(1,0,0,0),ma=r2(0,0,1,sinθ).{\displaystyle l_{a}=\left(-{\frac {\tilde {F}}{2}},1,0,0\right)\,,\quad n_{a}=(-1,0,0,0)\,,\quad m_{a}={\frac {r}{\sqrt {2}}}(0,0,1,\sin \theta )\,.}

In this null tetrad, the spin coefficients areκ=σ=τ=0,ν=λ=π=0,γ=0{\displaystyle \kappa =\sigma =\tau =0\,,\quad \nu =\lambda =\pi =0\,,\quad \gamma =0}ρ=r+2M(v)2r2,μ=1r,α=β=2cotθ4r,ε=M(v)2r2.{\displaystyle \rho ={\frac {-r+2M(v)}{2r^{2}}}\,,\quad \mu =-{\frac {1}{r}}\,,\quad \alpha =-\beta ={\frac {-{\sqrt {2}}\cot \theta }{4r}}\,,\quad \varepsilon ={\frac {M(v)}{2r^{2}}}\,.}

The Weyl-NP and Ricci-NP scalars are given byΨ0=Ψ1=Ψ3=Ψ4=0,Ψ2=M(v)r3,{\displaystyle \Psi _{0}=\Psi _{1}=\Psi _{3}=\Psi _{4}=0\,,\quad \Psi _{2}=-{\frac {M(v)}{r^{3}}}\,,}Φ10=Φ20=Φ11=Φ12=Φ22=Λ=0,Φ00=M(v),vr2.{\displaystyle \Phi _{10}=\Phi _{20}=\Phi _{11}=\Phi _{12}=\Phi _{22}=\Lambda =0\,,\quad \Phi _{00}={\frac {M(v)_{\,,\,v}}{r^{2}}}\;.}

Since the only nonvanishing Weyl-NP scalar isΨ2{\displaystyle \Psi _{2}}, the "advanced(/ingoing)" Vaidya spacetime is ofPetrov-type D, and there exists a radiation field encoded intoΦ00{\displaystyle \Phi _{00}}.

For the "advanced(/ingoing)" Schwarzschild metric Eq(5), still letG:=12Mr{\textstyle G:=1-{\frac {2M}{r}}}, and then the Lagrangian for the null radialgeodesics will have an ingoing solutionv˙=0{\displaystyle {\dot {v}}=0} and an outgoing solutionr˙=G2v˙{\textstyle {\dot {r}}={\frac {G}{2}}{\dot {v}}}. Similar to Box C, now set up the adapted ingoing tetrad byla=(1,G2,0,0),na=(0,1,0,0),ma=12r(0,0,1,icscθ),{\displaystyle l^{a}=\left(1,{\frac {G}{2}},0,0\right)\,,\quad n^{a}=(0,-1,0,0)\,,\quad m^{a}={\frac {1}{{\sqrt {2}}\,r}}(0,0,1,i\,\csc \theta )\,,}la=(G2,1,0,0),na=(1,0,0,0),ma=r2(0,0,1,sinθ).{\displaystyle l_{a}=\left(-{\frac {G}{2}},1,0,0\right)\,,\quad n_{a}=(-1,0,0,0)\,,\quad m_{a}={\frac {r}{\sqrt {2}}}(0,0,1,\sin \theta )\,.}so the spin coefficients areκ=σ=τ=0,ν=λ=π=0,γ=0{\displaystyle \kappa =\sigma =\tau =0\,,\quad \nu =\lambda =\pi =0\,,\quad \gamma =0}ρ=r+2M2r2,μ=1r,α=β=2cotθ4r,ε=M2r2,{\displaystyle \rho ={\frac {-r+2M}{2r^{2}}}\,,\quad \mu =-{\frac {1}{r}}\,,\quad \alpha =-\beta ={\frac {-{\sqrt {2}}\cot \theta }{4r}}\,,\quad \varepsilon ={\frac {M}{2r^{2}}}\,,}and the Weyl-NP and Ricci-NP scalars are given byΨ0=Ψ1=Ψ3=Ψ4=0,Ψ2=Mr3,{\displaystyle \Psi _{0}=\Psi _{1}=\Psi _{3}=\Psi _{4}=0\,,\quad \Psi _{2}=-{\frac {M}{r^{3}}}\,,}Φ00=Φ10=Φ20=Φ11=Φ12=Φ22=Λ=0.{\displaystyle \Phi _{00}=\Phi _{10}=\Phi _{20}=\Phi _{11}=\Phi _{12}=\Phi _{22}=\Lambda =0\,.}

The "advanced(/ingoing)" Schwarzschild spacetime is of Petrov-type D withΨ2{\displaystyle \Psi _{2}} being the only nonvanishing Weyl-NP scalar.

Comparison with the Schwarzschild metric

[edit]

As a natural and simplest extension of the Schwazschild metric, the Vaidya metric still has a lot in common with it:

  • Both metrics are of Petrov-type D withΨ2{\displaystyle \Psi _{2}} being the only nonvanishing Weyl-NP scalar (as calculated in Boxes A and B).

However, there are three clear differences between the Schwarzschild and Vaidya metric:

Extension of the Vaidya metric

[edit]

Kinnersley metric

[edit]

While the Vaidya metric is an extension of the Schwarzschild metric to include a pure radiation field, theKinnersley metric[7] constitutes a further extension of the Vaidya metric; it describes a massive object that accelerates in recoil as it emits massless radiation anisotropically.The Kinnersley metric is a special case of theKerr-Schild metric, and in cartesian spacetime coordinatesxμ{\displaystyle x^{\mu }} it takes the following form:

gμν=ημν2m(u(x))r(x)3σμ(x)σν(x){\displaystyle g_{\mu \nu }=\eta _{\mu \nu }-{\frac {2m{\bigl (}u(x){\bigr )}}{r(x)^{3}}}\sigma _{\mu }(x)\sigma _{\nu }(x)}18
r(x)=σμ(x)λμ(u(x)){\displaystyle r(x)=\sigma _{\mu }(x)\,\,\lambda ^{\mu }(u(x))}19
σμ(x)=Xμ(u(x))xμ,ημνσμ(x)σν(x)=0{\displaystyle \sigma ^{\mu }(x)=X^{\mu }(u(x))-x^{\mu },\quad \eta _{\mu \nu }\sigma ^{\mu }(x)\sigma ^{\nu }(x)=0}20

where for the duration of this section all indices shall be raised and lowered using the "flat space" metricημν{\displaystyle \eta _{\mu \nu }}, the "mass"m(u){\displaystyle m(u)} is an arbitrary function of theproper-timeu{\displaystyle u} along the mass'sworld line as measured using the "flat" metric,du2=ημνdXμdXν,{\displaystyle du^{2}=\eta _{\mu \nu }\,dX^{\mu }dX^{\nu },} andXμ(u){\displaystyle X^{\mu }(u)} describes the arbitrary world line of the mass,λμ(u)=dXμ(u)/du{\displaystyle \lambda ^{\mu }(u)=dX^{\mu }(u)/du} is then thefour-velocity of the mass,σμ(x){\displaystyle \sigma _{\mu }(x)} is a "flat metric" null-vector field implicitly defined by Eqn. (20), andu(x){\displaystyle u(x)} implicitly extends the proper-time parameter to a scalar field throughout spacetime by viewing it as constant on the outgoing light cone of the "flat" metric that emerges from the eventXμ(u),{\displaystyle X^{\mu }(u),} and satisfies the identityλμ(u(x))μu(x)=1.{\displaystyle \lambda ^{\mu }(u(x))\,\partial _{\mu }u(x)=1.}Grinding out theEinstein tensor for the metricgμν{\displaystyle g_{\mu \nu }} and integrating the outgoingenergy–momentum flux "at infinity," one finds that the metricgμν{\displaystyle g_{\mu \nu }} describes a masswith proper-time dependentfour-momentumPμ=m(u)λμ(u){\displaystyle P^{\mu }=m(u)\,\lambda ^{\mu }(u)} that emits a net <<link:0>> at a proper rate ofdPμ/du;{\displaystyle -dP^{\mu }/du;} as viewed from the mass's instantaneous rest-frame, the radiation flux has an angular distributionA(u)+B(u)cos(θ(u)),{\displaystyle A(u)+B(u)\,\cos(\theta (u)),} whereA(u){\displaystyle A(u)} andB(u){\displaystyle B(u)} are complicated scalar functions ofm(u),λμ(u),σμ(u),{\displaystyle m(u),\lambda ^{\mu }(u),\sigma _{\mu }(u),} and their derivatives, andθ(u){\displaystyle \theta (u)} is the instantaneous rest-frame angle between the 3-acceleration and the outgoing null-vector.The Kinnersley metric may therefore be viewed as describing the gravitational field of an acceleratingphoton rocket with a very badly collimated exhaust.

In the special case whereλμ{\displaystyle \lambda ^{\mu }} is independent of proper-time, the Kinnersley metric reduces to the Vaidya metric.

Vaidya–Bonner metric

[edit]

Since the radiated or absorbed matter might be electrically non-neutral, the outgoing and ingoing Vaidya metrics Eqs(6)(7) can be naturally extended to include varying electric charges,

ds2=(12M(u)r+Q(u)r2)du22dudr+r2(dθ2+sin2θdϕ2),{\displaystyle ds^{2}=-\left(1-{\frac {2M(u)}{r}}+{\frac {Q(u)}{r^{2}}}\right)du^{2}-2dudr+r^{2}(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2})\;,}18
ds2=(12M(v)r+Q(v)r2)dv2+2dvdr+r2(dθ2+sin2θdϕ2).{\displaystyle ds^{2}=-\left(1-{\frac {2M(v)}{r}}+{\frac {Q(v)}{r^{2}}}\right)dv^{2}+2dvdr+r^{2}(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2})\;.}19

Eqs(18)(19) are called the Vaidya-Bonner metrics, and apparently, they can also be regarded as extensions of theReissner–Nordström metric, analogously to the correspondence between Vaidya and Schwarzschild metrics.

See also

[edit]

References

[edit]
  1. ^abcdEric Poisson.A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge: Cambridge University Press, 2004. Section 4.3.5 and Section 5.1.8.
  2. ^abcdJeremy Bransom Griffiths, Jiri Podolsky.Exact Space-Times in Einstein's General Relativity. Cambridge: Cambridge University Press, 2009. Section 9.5.
  3. ^Thanu Padmanabhan.Gravitation: Foundations and Frontiers. Cambridge: Cambridge University Press, 2010. Section 7.3.
  4. ^Pankaj S Joshi.Global Aspects in Gravitation and Cosmology. Oxford: Oxford University Press, 1996. Section 3.5.
  5. ^Pankaj S Joshi.Gravitational Collapse and Spacetime Singularities. Cambridge: Cambridge University Press, 2007. Section 2.7.6.
  6. ^Valeri Pavlovich Frolov, Igor Dmitrievich Novikov.Black Hole Physics: Basic Concepts and New Developments. Berlin: Springer, 1998. Section 5.7.
  7. ^Kinnersley, W. (October 1969). "Field of an arbitrarily accelerating point mass".Phys. Rev.186 (5): 1335.Bibcode:1969PhRv..186.1335K.doi:10.1103/PhysRev.186.1335.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vaidya_metric&oldid=1292056834"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp