This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Universality class" – news ·newspapers ·books ·scholar ·JSTOR(December 2017) (Learn how and when to remove this message) |
Instatistical mechanics, auniversality class is a collection ofmathematical models which share a singlescale-invariant limit under the process ofrenormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular,asymptotic phenomena such ascritical exponents will be the same for all models in the class.
Some well-studied universality classes are the ones containing theIsing model or thepercolation theory at their respectivephase transition points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes will have a lower and uppercritical dimension: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2d for the Ising model, or for directed percolation, but 1d for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog ofmean-field theory (this dimension is 4d for Ising or for directed percolation, and 6d for undirected percolation).
Critical exponents are defined in terms of the variation of certain physical properties of the system near its phase transition point. These physical properties will include itsreduced temperature, itsorder parameter measuring how much of the system is in the "ordered" phase, thespecific heat, and so on.
For symmetries, the group listed gives the symmetry of the order parameter. The group is thedihedral group, the symmetry group of then-gon, is then-elementsymmetric group, is theoctahedral group, and is theorthogonal group inn dimensions.1 is thetrivial group.
class | dimension | Symmetry | ||||||
---|---|---|---|---|---|---|---|---|
3-statePotts | 2 | 1/3 | 1/9 | 13/9 | 14 | 5/6 | 4/15 | |
Ashkin–Teller (4-state Potts) | 2 | 2/3 | 1/12 | 7/6 | 15 | 2/3 | 1/4 | |
Ordinary percolation | 1 | 1 | 1 | 0 | 1 | 1 | 1 | |
2 | 1 | −2/3 | 5/36 | 43/18 | 91/5 | 4/3 | 5/24 | |
3 | 1 | −0.625(3) | 0.4181(8) | 1.793(3) | 5.29(6) | 0.87619(12) | 0.46(8) or 0.59(9) | |
4 | 1 | −0.756(40) | 0.657(9) | 1.422(16) | 3.9 or 3.198(6) | 0.689(10) | −0.0944(28) | |
5 | 1 | ≈ −0.85 | 0.830(10) | 1.185(5) | 3.0 | 0.569(5) | −0.075(20) or −0.0565 | |
6+ | 1 | −1 | 1 | 1 | 2 | 1/2 | 0 | |
Directed percolation | 1 | 1 | 0.159464(6) | 0.276486(8) | 2.277730(5) | 0.159464(6) | 1.096854(4) | 0.313686(8) |
2 | 1 | 0.451 | 0.536(3) | 1.60 | 0.451 | 0.733(8) | 0.230 | |
3 | 1 | 0.73 | 0.813(9) | 1.25 | 0.73 | 0.584(5) | 0.12 | |
4+ | 1 | −1 | 1 | 1 | 2 | 1/2 | 0 | |
Conserved directed percolation (Manna, or "local linear interface") | 1 | 1 | 0.28(1) | 0.14(1) | 1.11(2)[1] | 0.34(2)[1] | ||
2 | 1 | 0.64(1) | 1.59(3) | 0.50(5) | 1.29(8) | 0.29(5) | ||
3 | 1 | 0.84(2) | 1.23(4) | 0.90(3) | 1.12(8) | 0.16(5) | ||
4+ | 1 | 1 | 1 | 1 | 1 | 0 | ||
Protected percolation | 2 | 1 | 5/41[2] | 86/41[2] | ||||
3 | 1 | 0.28871(15)[2] | 1.3066(19)[2] | |||||
Ising | 2 | 0 | 1/8 | 7/4 | 15 | 1 | 1/4 | |
3 | 0.11008(1) | 0.326419(3) | 1.237075(10) | 4.78984(1) | 0.629971(4) | 0.036298(2) | ||
XY | 3 | -0.01526(30) | 0.34869(7) | 1.3179(2) | 4.77937(25) | 0.67175(10) | 0.038176(44) | |
Heisenberg | 3 | −0.12(1) | 0.366(2) | 1.395(5) | 0.707(3) | 0.035(2) | ||
Mean field | all | any | 0 | 1/2 | 1 | 3 | 1/2 | 0 |
Molecular beam epitaxy[3] | ||||||||
Gaussian free field |
{{cite book}}
: CS1 maint: location missing publisher (link)