Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ullmann condensation

From Wikipedia, the free encyclopedia
Copper-promoted cross-coupling reactions
Ullmann condensation
Named afterFritz Ullmann
Reaction typeCoupling reaction
Identifiers
Organic Chemistry Portalullmann-reaction
RSC ontology IDRXNO:0000081
See also:Ullmann reaction

TheUllmann condensation orUllmann-type reaction is the copper-promoted conversion ofaryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples ofcross-coupling reactions.[1]

Ullmann-type reactions are comparable toBuchwald–Hartwig reactions but usually require higher temperatures. Traditionally, these reactions require high-boiling, polar solvents such asN-methylpyrrolidone,nitrobenzene, ordimethylformamide and high temperatures (often in excess of 210 °C) withstoichiometric amounts of copper. Aryl halides are required to be activated byelectron-withdrawing groups. Traditional Ullmann style reactions used "activated" copper powder, e.g. prepared in situ by thereduction ofcopper sulfate byzinc metal in hot water. The methodology improved with the introduction of soluble copper catalysts supported bydiamines and acetylacetonate ligands.[1]

Ullmann ether synthesis: C-O coupling

[edit]

Illustrative of the traditional Ullmann ether synthesis is the preparation of p-nitrophenyl phenyl ether from4-chloronitrobenzene andphenol.[2]

O2NC6H4Cl + C6H5OH + KOH → O2NC6H4O−C6H5 + KCl + H2O

Copper is used as a catalyst, either in the form of the metal or copper salts. Modern arylations use soluble copper catalysts.[3]

Goldberg reaction: C-N coupling

[edit]

A traditionalGoldberg reaction involves reaction of ananiline with an aryl halide. The coupling of2-chlorobenzoic acid and aniline is illustrative:[4]

C6H5NH2 + ClC6H4CO2H + KOH → C6H5N(H)−C6H4CO2H + KCl + H2O

A typical catalyst is formed fromcopper(I) iodide andphenanthroline. The reaction is an alternative to theBuchwald–Hartwig amination reaction.

Aryl iodides are more reactive arylating agents than are aryl chlorides, following the usual pattern. Electron-withdrawing groups on the aryl halide also accelerate the coupling.[5]

Hurtley reaction: C-C coupling

[edit]

The nucleophile can also be carbon includingcarbanions as well ascyanide. In the traditionalHurtley reaction, the carbon nucleophiles were derived frommalonic ester and other dicarbonyl compounds:[6]

Z2CH2 + BrC6H4CO2H + KOH → Z2C(H)−C6H4CO2H + KBr + H2O (Z = CO2H)

More modern Cu-catalyzed C-C cross-couplings utilize soluble copper complexes containing phenanthroline ligands.[7]

C–S coupling

[edit]

The arylation of alkylthiolates proceeds by the intermediacy of cuprous thiolates.[8]

Mechanism of Ullmann-type reactions

[edit]

In the case of Ullmann-type reactions (aminations, etherifications, etc. of aryl halides), the conversions involve copper(I) alkoxide, copper(I) amides, copper(I) thiolates. The copper(I) reagent can be generated in situ from the aryl halide and copper metal. Even copper(II) sources are effective under some circumstances. A number of innovations have been developed with regards to copper reagents.[1]

These copper(I) compounds subsequently react with the aryl halide in a net metathesis reaction:

Ar−X + CuOR → Ar−OR + CuX
Ar−X + CuSR → Ar−SR + CuX
Ar−X + CuNHR → Ar−NHR + CuX

In the case of C-N coupling, kinetic studies implicateoxidative addition reaction followed by reductive elimination from Cu(III) intermediates (Ln = one or morespectator ligands):[9]

ROCuAr(X)Ln → RO−Ar + CuLn

History

[edit]

The Ullmann ether synthesis is named after its inventor,Fritz Ullmann.[10] The corresponding Goldberg reaction, is named afterIrma Goldberg.[11] The Hurtley reaction, which involves C-C bond formation, is similarly named after its inventor.[6]

References

[edit]
  1. ^abcFlorian Monnier, Marc Taillefer (2009). "Minireview Catalytic CC, CN, and CO Ullmann-Type Coupling Reactions".Angewandte Chemie International Edition.48 (38):6954–71.doi:10.1002/anie.200804497.PMID 19681081.
  2. ^Ray Q. Brewster; Theodore Groening (1934). "p-Nitrodiphenyl Ether".Org. Synth.14: 66.doi:10.15227/orgsyn.014.0066.
  3. ^Buck, Elizabeth; Song, Zhiguo J. (2005). "Preparation of 1-Methoxy-2-(4-Methoxyphenoxy)Benzene".Organic Syntheses.82: 69.doi:10.15227/orgsyn.082.0069.
  4. ^C. F. H. Allen, G. H. W. McKee (1939). "Acridone".Organic Syntheses.19: 6.doi:10.15227/orgsyn.019.0006.
  5. ^H.B. Goodbrand; Nan-Xing Hu (1999). "Ligand-Accelerated Catalysis of the Ullmann Condensation: Application to Hole Conducting Triarylamines".Journal of Organic Chemistry.64 (2):670–674.doi:10.1021/jo981804o.
  6. ^abWilliam Robert Hardy Hurtley (1929). "Replacement of Halogen inortho-Bromobenzoic Acid".J. Chem. Soc.: 1870.doi:10.1039/JR9290001870.
  7. ^Antoine Nitelet, Sara Zahim, Cédric Theunissen, Alexandre Pradal, Gwilherm Evano (2016)."Copper-catalyzed Cyanation of Alkenyl Iodides".Org. Synth.93: 163.doi:10.15227/orgsyn.093.0163.hdl:2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/224406.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^Roger Adams, Walter Reifschneider, Aldo Ferretti (1962). "1,2-Bis(N-butylthio)benzene".Org. Synth.42: 22.doi:10.15227/orgsyn.042.0022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^Ramesh Giri; Andrew Brusoe; Konstantin Troshin; Justin Y. Wang; Marc Font; John F. Hartwig (2018)."Mechanism of the Ullmann Biaryl Ether Synthesis Catalyzed by Complexes of Anionic Ligands: Evidence for the Reaction of Iodoarenes with Ligated Anionic CuI Intermediates".J. Am. Chem. Soc.140 (2):793–806.Bibcode:2018JAChS.140..793G.doi:10.1021/jacs.7b11853.PMC 5810543.PMID 29224350.
  10. ^Fritz Ullmann, Paul Sponagel (1905)."Ueber die Phenylirung von Phenolen".Berichte der deutschen chemischen Gesellschaft.38 (2):2211–2212.doi:10.1002/cber.190503802176.
  11. ^Irma Goldberg (1906)."Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator".Berichte der deutschen chemischen Gesellschaft.39 (2):1691–1692.doi:10.1002/cber.19060390298.
Carbon-carbon
bond forming
reactions
Homologation reactions
Olefination reactions
Carbon-heteroatom
bond forming
reactions
Degradation
reactions
Organic redox
reactions
Rearrangement
reactions
Ring forming
reactions
Cycloaddition
Heterocycle forming reactions
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ullmann_condensation&oldid=1308084834"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp