
AType II supernova orSNII[1] (plural:supernovae) results from the violent explosion of a massivestar following the rapid collapse of its core. A star must have at least eight times, but no more than 40 to 50 times, themass of the Sun (M☉) to undergo this type of explosion.[2] Type II supernovae are distinguished from other types ofsupernovae by the presence of hydrogen in theirspectra. They are usually observed in thespiral arms ofgalaxies and inH II regions, but not inelliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.
Stars generate energy by thenuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have anatomic mass greater than hydrogen and helium, albeit at increasingly highertemperatures andpressures, causing correspondingly shorter stellar life spans. Thedegeneracy pressure of electrons and the energy generated by thesefusion reactions are sufficient to counter the force of gravity and prevent the star from collapsing, maintaining stellar equilibrium. The star fuses increasingly higher mass elements, starting withhydrogen and thenhelium, progressing up through the periodic table until a core ofiron andnickel is produced. Fusion of iron or nickel produces no net energy output, so no further fusion can take place, leaving the nickel–iron core inert. Due to the lack of energy output creating outward thermal pressure, the core contracts due to gravity until the overlying weight of the star can be supported largely by electron degeneracy pressure.
When the compacted mass of the inert core exceeds theChandrasekhar limit of about 1.4 M☉, electron degeneracy is no longer sufficient to counter the gravitational compression. A cataclysmicimplosion of the core takes place within seconds. Without the support of the now-imploded inner core, the outer core collapses inwards under gravity and reaches avelocity of up to 23% of thespeed of light, and the sudden compression increases the temperature of the inner core to up to 100 billionkelvins.Neutrons andneutrinos are formed viareversed beta-decay, releasing about 1046 joules (100 foe) in a ten-second burst. The collapse of the inner core is halted by therepulsive nuclear force andneutron degeneracy, causing the implosion to rebound and bounce outward. The energy of this expandingshock wave is sufficient to disrupt the overlying stellar material and accelerate it to escape velocity, forming a supernova explosion. The shock wave and extremely high temperature and pressure rapidly dissipate but are present for long enough to allow for a brief period during which theproduction of elements heavier than iron occurs.[3] Depending on the star's initial mass, the remnants of the core form aneutron star or ablack hole. Because of the underlying mechanism, the resulting supernova is also described as a core-collapse supernova.
There exist several categories of Type II supernova explosions, which are categorized based on the resultinglight curve—a graph of luminosity versus time—following the explosion. Type II-L supernovae show a steady (linear) decline of the light curve following the explosion, whereas Type II-P display a period of slower decline (a plateau) in their light curve followed by a normal decay.Type Ib and Ic supernovae are a type of core-collapse supernova for a massive star that has shed its outer envelope of hydrogen and (for Type Ic) helium. As a result, they appear to be lacking in these elements.

Stars far more massive than the sun evolve in complex ways. In the core of the star,hydrogen isfused intohelium, releasingthermal energy that heats the star's core and provides outwardpressure that supports the star's layers against collapse – a situation known as stellar orhydrostatic equilibrium. The helium produced in the core accumulates there. Temperatures in the core are not yet high enough to cause it to fuse. Eventually, as the hydrogen at the core is exhausted, fusion starts to slow down, andgravity causes the core to contract. This contraction raises the temperature high enough to allow a shorter phase of helium fusion, which producescarbon andoxygen, and accounts for less than 10% of the star's total lifetime.
In stars of less than eight solar masses, thecarbon produced by helium fusion does not fuse, and the star gradually cools to become awhite dwarf.[4][5] If they accumulate more mass from another star, or some other source, they may becomeType Ia supernovae. But a much larger star is massive enough to continue fusion beyond this point.
The cores of these massive stars directly create temperatures and pressures needed to cause the carbon in the core to begin to fuse when the star contracts at the end of the helium-burning stage. The core gradually becomes layered like an onion, as progressively heavier atomic nuclei build up at the center, with an outermost layer of hydrogen gas, surrounding a layer of hydrogen fusing into helium, surrounding a layer of helium fusing into carbon via thetriple-alpha process, surrounding layers that fuse to progressively heavier elements. As a star this massive evolves, it undergoes repeated stages where fusion in the core stops, and the core collapses until the pressure and temperature are sufficient to begin the next stage of fusion, reigniting to halt collapse.[4][5]
| Process | Main fuel | Main products | 25 M☉ star[6] | ||
|---|---|---|---|---|---|
| Temperature (K) | Density (g/cm3) | Duration | |||
| hydrogen burning | hydrogen | helium | 7×107 | 10 | 107 years |
| triple-alpha process | helium | carbon,oxygen | 2×108 | 2000 | 106 years |
| carbon-burning process | carbon | Ne,Na,Mg,Al | 8×108 | 106 | 1000 years |
| neon-burning process | neon | O,Mg | 1.6×109 | 107 | 3 years |
| oxygen-burning process | oxygen | Si,S,Ar,Ca | 1.8×109 | 107 | 0.3 years |
| silicon-burning process | silicon | nickel (decays intoiron) | 2.5×109 | 108 | 5 days |
The factor limiting this process is the amount of energy that is released through fusion, which is dependent on thebinding energy that holds together these atomic nuclei. Each additional step produces progressively heavier nuclei, which release progressively less energy when fusing. In addition, fromcarbon-burning onwards, energy loss vianeutrino production becomes significant, leading to a higher rate of reaction than would otherwise take place.[7] This continues untilnickel-56 is produced, which decays radioactively intocobalt-56 and theniron-56 over the course of a few months. As iron and nickel have the highestbinding energy pernucleon of all the elements,[8] energy cannot be produced at the core by fusion, and a nickel-iron core grows.[5][9] This core is under huge gravitational pressure. As there is no fusion to further raise the star's temperature to support it against collapse, it is supported only bydegeneracy pressure ofelectrons. In this state, matter is so dense that further compaction would require electrons to occupy the sameenergy states. However, this is forbidden for identicalfermion particles, such as the electron – a phenomenon called thePauli exclusion principle.
When the core's mass exceeds theChandrasekhar limit of about 1.4 M☉, degeneracy pressure can no longer support it, and catastrophic collapse ensues.[10] The outer part of the core reaches velocities of up to70000 km/s (23% of thespeed of light) as it collapses toward the center of the star.[11] The rapidly shrinking core heats up, producing high-energygamma rays that decompose ironnuclei into helium nuclei and freeneutrons viaphotodisintegration. As the core'sdensity increases, it becomes energetically favorable forelectrons andprotons to merge via inversebeta decay, producing neutrons andelementary particles calledneutrinos. Because neutrinos rarely interact with normal matter, they can escape from the core, carrying away energy and further accelerating the collapse, which proceeds over a timescale of milliseconds. As the core detaches from the outer layers of the star, some of these neutrinos are absorbed by the star's outer layers, beginning the supernova explosion.[12]
For Type II supernovae, the collapse is eventually halted by short-range repulsive neutron-neutron interactions, mediated by thestrong force, as well as bydegeneracy pressure of neutrons, at a density comparable to that of an atomic nucleus. When the collapse stops, the infalling matter rebounds, producing ashock wave that propagates outward. The energy from this shock dissociates heavy elements within the core. This reduces the energy of the shock, which can stall the explosion within the outer core.[13]
The core collapse phase is so dense and energetic that only neutrinos are able to escape. As the protons and electrons combine to form neutrons by means ofelectron capture, an electron neutrino is produced. In a typical Type II supernova, the newly formed neutron core has an initial temperature of about 100 billionkelvins, 104 times the temperature of the Sun's core. Much of this thermal energy must be shed for a stable neutron star to form, otherwise the neutrons would "boil away". This is accomplished by a further release of neutrinos.[14] These 'thermal' neutrinos form as neutrino-antineutrino pairs of allflavors, and total several times the number of electron-capture neutrinos.[15] The two neutrino production mechanisms convert thegravitational potential energy of the collapse into a ten-second neutrino burst, releasing about 1046 joules (100 foe).[16]
Through a process that is not clearly understood, about 1%, or 1044 joules (1 foe), of the energy released (in the form ofneutrinos) is reabsorbed by the stalled shock, producing the supernova explosion.[13]Neutrinos generated by a supernova were observed in the case ofSupernova 1987A, leading astrophysicists to conclude that the core collapse picture is basically correct. The water-basedKamiokande II andIMB instruments detected antineutrinos of thermal origin,[14] while thegallium-71-basedBaksan instrument detected neutrinos (lepton number = 1) of either thermal or electron-capture origin.

When the progenitor star is below about 20 M☉ – depending on the strength of the explosion and the amount of material that falls back – the degenerate remnant of a core collapse is aneutron star.[11] Above this mass, the remnant collapses to form ablack hole.[5][17] The theoretical limiting mass for this type of core collapse scenario is about 40–50 M☉. Above that mass, a star is believed to collapse directly into a black hole without forming a supernova explosion,[18] although uncertainties in models of supernova collapse make calculation of these limits uncertain.
TheStandard Model ofparticle physics is a theory which describes three of the four knownfundamental interactions between theelementary particles that make up allmatter. This theory allows predictions to be made about how particles will interact under many conditions. The energy per particle in a supernova is typically 1–150picojoules (tens to hundreds ofMeV).[19][failed verification] The per-particle energy involved in a supernova is small enough that the predictions gained from the Standard Model of particle physics are likely to be basically correct. But the high densities may require corrections to the Standard Model.[20] In particular, Earth-basedparticle accelerators can produce particle interactions which are of much higher energy than are found in supernovae,[21] but these experiments involve individual particles interacting with individual particles, and it is likely that the high densities within the supernova will produce novel effects. The interactions between neutrinos and the other particles in the supernova take place with theweak nuclear force, which is believed to be well understood. However, the interactions between the protons and neutrons involve thestrong nuclear force, which is much less well understood.[22]
The major unsolved problem with Type II supernovae is that it is not understood how the burst ofneutrinos transfers its energy to the rest of the star producing the shock wave which causes the star to explode. From the above discussion, only one percent of the energy needs to be transferred to produce an explosion, but explaining how that one percent of transfer occurs has proven extremely difficult, even though the particle interactions involved are believed to be well understood. In the 1990s, one model for doing this involvedconvective overturn, which suggests that convection, either fromneutrinos from below, or infalling matter from above, completes the process of destroying the progenitor star. Heavier elements than iron are formed during this explosion byneutron capture, and from the pressure of the neutrinos pressing into the boundary of the "neutrinosphere", seeding the surrounding space with a cloud of gas and dust which is richer in heavy elements than the material from which the star originally formed.[23]
Neutrino physics, which is modeled by theStandard Model, is crucial to the understanding of this process.[20] The other crucial area of investigation is thehydrodynamics of the plasma that makes up the dying star; how it behaves during the core collapse determines when and how theshockwave forms and when and how it stalls and is reenergized.[24]
In fact, some theoretical models incorporate a hydrodynamical instability in the stalled shock known as the "Standing Accretion Shock Instability" (SASI). This instability comes about as a consequence of non-spherical perturbations oscillating the stalled shock thereby deforming it. The SASI is often used in tandem with neutrino theories in computer simulations for re-energizing the stalled shock.[25]
Computer models have been very successful at calculating the behavior of Type II supernovae when the shock has been formed. By ignoring the first second of the explosion, and assuming that an explosion is started,astrophysicists have been able to make detailed predictions about the elements produced by the supernova and of the expectedlight curve from the supernova.[26][27][28]

When thespectrum of a Type II supernova is examined, it normally displaysBalmer absorption lines – reduced flux at the characteristicfrequencies where hydrogen atoms absorb energy. The presence of these lines is used to distinguish this category of supernova from aType I supernova.
When the luminosity of a Type II supernova is plotted over a period of time, it shows a characteristic rise to a peak brightness followed by a decline. These light curves have an average decay rate of 0.008 magnitudes per day; much lower than the decay rate for Type Ia supernovae. Type II is subdivided into two classes, depending on the shape of the light curve. The light curve for a Type II-L supernova shows a steady (linear) decline following the peak brightness. By contrast, the light curve of a Type II-P supernova has a distinctive flat stretch (called aplateau) during the decline; representing a period where the luminosity decays at a slower rate. The net luminosity decay rate is lower, at 0.0075 magnitudes per day for Type II-P, compared to 0.012 magnitudes per day for Type II-L.[29]
The difference in the shape of the light curves is believed to be caused, in the case of Type II-L supernovae, by the expulsion of most of the hydrogen envelope of the progenitor star.[29] The plateau phase in Type II-P supernovae is due to a change in theopacity of the exterior layer. The shock waveionizes the hydrogen in the outer envelope – stripping the electron from the hydrogen atom – resulting in a significant increase in theopacity. This prevents photons from the inner parts of the explosion from escaping. When the hydrogen cools sufficiently to recombine, the outer layer becomes transparent.[30]
The "n" denotes narrow, which indicates the presence of narrow or intermediate width hydrogen emission lines in the spectra. In the intermediate width case, the ejecta from the explosion may be interacting strongly with gas around the star – the circumstellar medium.[31][32] The estimated circumstellar density required to explain the observational properties is much higher than that expected from the standardstellar evolution theory.[33] It is generally assumed that the high circumstellar density is due to the high mass-loss rates of the Type IIn progenitors. The estimated mass-loss rates are typically higher than10−3 M☉ per year. There are indications that they originate as stars similar toluminous blue variables with large mass losses before exploding.[34]SN 1998S andSN 2005gl are examples of Type IIn supernovae;SN 2006gy, an extremely energetic supernova, may be another example.[35]
Some supernovae of Type IIn show interactions with the circumstellar medium, which leads to an increased temperature of thecirumstellar dust. This warm dust can be observed as a brightening in themid-infrared light. If the circumstellar medium extends further from the supernova, the mid-infrared brightening can cause aninfrared echo, causing the brightening to last more than 1000 days. These kind of supernovae belong to the rare 2010jl-like supernovae, named after the archetypalSN 2010jl. Most 2010jl-like supernovae were discovered with the decommissionedSpitzer Space Telescope and theWide-Field Infrared Survey Explorer (e.g.SN 2014ab,SN 2017hcc).[36][37][38][39]
A Type IIb supernova has a weak hydrogen line in its initial spectrum, which is why it is classified as a Type II. However, later on the H emission becomes undetectable, and there is also a second peak in the light curve that has a spectrum which more closely resembles aType Ib supernova. The progenitor could have been a massive star that expelled most of its outer layers, or one which lost most of its hydrogen envelope due to interactions with a companion in a binary system, leaving behind the core that consisted almost entirely of helium.[40] As the ejecta of a Type IIb expands, the hydrogen layer quickly becomesmore transparent and reveals the deeper layers.[40]The classic example of a Type IIb supernova isSN 1993J,[41][42] while another example isCassiopeia A.[43] The IIb class was first introduced (as a theoretical concept) by Woosley et al. in 1987,[44] and the class was soon applied toSN 1987K[45] andSN 1993J.[46]
2017hcc is first mentioned in this research note as 2010jl-like, but sadly Moran et al. missed this research note.