Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Thorne–Żytkow object

From Wikipedia, the free encyclopedia
"TZO" redirects here. For the language with ISO 639 code "tzo", seeTzotzil language.
Hypothetical hybrid star type

AThorne–Żytkow object (TŻO orTZO), a type of hybrid star, is a conjectured type ofstar wherein ared giant orred supergiant contains aneutron star at its core, formed from thecollision of the giant with the neutron star. Such objects were hypothesized byKip Thorne andAnna Żytkow in 1977.[1] In 2014, it was discovered that the starHV 2112, located in theSmall Magellanic Cloud (SMC), was a strong candidate,[2][3] though this view has since been refuted.[4] Another possible candidate is the starHV 11417, also located in the SMC.[4]

Formation

[edit]

A Thorne–Żytkow object would be formed when aneutron star collides with anotherstar, often a red giant or supergiant. The colliding objects can simply be wandering stars, though this is only likely to occur in extremely crowdedglobular clusters. Alternatively, the neutron star could form in abinary system when one of the two stars goessupernova. Becauseno supernova is perfectly symmetric, and because thebinding energy of the binary changes with the mass lost in the supernova, the neutron star will be left with some velocity relative to its original orbit. This kick may cause its new orbit to intersect with its companion, or, if its companion is amain-sequence star, it may be engulfed when its companion evolves into a red giant.[5]

Once the neutron star enters the red giant,drag between the neutron star and the outer, diffuse layers of the red giant causes the binary star system'sorbit to decay, and the neutron star and core of the red giant spiral inward toward one another. Depending on their initial separation, this process may take hundreds of years. When the two finally collide, the neutron star and red giant core will merge. If their combined mass exceeds theTolman–Oppenheimer–Volkoff limit, then the two will collapse into ablack hole. Otherwise, the two will coalesce into a single neutron star.[6]

If a neutron star and awhite dwarf merge, this could form a Thorne–Żytkow object with the properties of anR Coronae Borealis variable.[7]

Properties

[edit]

The surface of the neutron star is very hot, with temperatures exceeding 109K, hotter than the cores of all but the most massive stars. This heat is dominated either bynuclear fusion in the accreting gas or by compression of the gas by the neutron star's gravity.[8][9] Because of the high temperature, unusual nuclear processes may take place as the envelope of the red giant falls onto the neutron star's surface.Hydrogen may fuse to produce a different mixture ofisotopes than it does in ordinarystellar nucleosynthesis, and some astronomers have proposed that therapid proton nucleosynthesis that occurs in X-ray bursts also takes place inside Thorne–Żytkow objects.[10]

Observationally, a Thorne–Żytkow object may resemble ared supergiant,[2] or, if it is hot enough to blow off the hydrogen-rich surface layers, a nitrogen-richWolf–Rayet star (type WN8).[11]

A TŻO has an estimated lifespan of 105–106 years. Given this lifespan, it is possible that between 20 and 200 Thorne-Żytkow objects currently exist in theMilky Way.[12]

The only way to unambiguously determine whether or not a star is a TŻO is a multi-messenger detection of both thegravitational waves of the inner neutron star and an optical spectrum of the metals atypical of a normalred supergiant. It is possible to detect pre-existing TŻOs with currentLIGO detectors; the neutron star core would emit a continuous wave.[13]

Dissolution

[edit]

It has been theorized that mass loss will eventually end the TŻO stage, with the remaining envelope converted to a disk, resulting in the formation of a neutron star with a massiveaccretion disk.[14] These neutron stars may form the population of isolatedpulsars with accretion disks.[14] The massive accretion disk may also collapse into a new star, becoming a stellar companion to the neutron star. The neutron star may also accrete sufficient material to collapse into ablack hole.[15]

Observation history

[edit]

In 2014, a team led byEmily Levesque argued that the starHV 2112 had unusually high abundances of elements such asmolybdenum,rubidium,lithium, andcalcium, and a high luminosity. Since both are expected characteristics of Thorne–Żytkow objects, this led the team to suggest that HV 2112 might be the first discovery of a TZO.[2] However, this claim was challenged in a 2018 paper byEmma Beasor and collaborators,[4] who argued that there is no evidence for HV 2112 having any unusual abundance patterns beyond a possible enrichment of lithium and that its luminosity is too low. They put forth another candidate,HV 11417, based on an apparent over-abundance of rubidium and a similar luminosity as HV 2112.[4]

List of candidate TŻOs

[edit]
CandidateRight ascensionDeclinationLocationDiscoveryNotesRefs
HV 211201h 10m 03.87s−72° 36′ 52.6″Small Magellanic Cloud2014Classified as a supergiant TZO candidate[2][16][17][18] or anAGB star[4][2][16][17][18][4]
HV 1141701h 00m 48.2s−72° 51′ 02.1″Small Magellanic Cloud2018Classified as an AGB star[4][4][19]
VX Sagittarii18h 08m 04.04831s−22° 13′ 26.6327″Sagittarius2021Classified as red supergiant, red hypergiant or a possible super-AGB star[20][20][21]
V595 Cassiopeiae01h 43m 02.72s+56° 30′ 46.02″Cassiopeia2002[22]
IO Persei03h 06m 47.27s+55° 43′ 59.35″Perseus2002[22]
KN Cassiopeiae00h 09m 36.37s+62° 40′ 04.12″Cassiopeia2002[22]
U Aquarii22h 03m 19.69s−16° 37′ 35.2″Aquarius1999Catalogued as aR Coronae Borealis variable[7]
VZ Sagittarii18h 15m 08.58s−29° 42′ 29.6″Sagittarius1999Catalogued as aR Coronae Borealis variable[7]

List of candidate former and future TŻOs

[edit]
Candidate former TŻORight ascensionDeclinationLocationDiscoveryNotesRefs
GRO J1655-4016h 54m 00.14s−39° 50′ 44.9″Scorpius1995The progenitor for both the companion star and the black hole in this system is hypothesized to have been a TŻO.[15]
BD+61 2536

(TIC 470710327)

23h 49m 18.99s+61° 57′ 46.0″Cassiopeia2022Massive hierarchical triple star system that could evolve either into aneutron-star merger or a TŻO.[23]

See also

[edit]

References

[edit]
  1. ^Thorne, Kip S.; Żytkow, Anna N. (15 March 1977). "Stars with degenerate neutron cores. I - Structure of equilibrium models".The Astrophysical Journal.212 (1):832–858.Bibcode:1977ApJ...212..832T.doi:10.1086/155109.
  2. ^abcdeLevesque, Emily M.; Massey, Philip; Zytkow, Anna N.; Morrell, Nidia (2014)."Discovery of a Thorne–Żytkow object candidate in the Small Magellanic Cloud".Monthly Notices of the Royal Astronomical Society: Letters.443:L94 –L98.arXiv:1406.0001.Bibcode:2014MNRAS.443L..94L.doi:10.1093/mnrasl/slu080.S2CID 119192926.
  3. ^"Astronomers discover first Thorne-Zytkow object, a bizarre type of hybrid star".PhysOrg. 4 June 2014.
  4. ^abcdefghBeasor, Emma; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (2 July 2018)."A critical re-evaluation of the Thorne-Żytkow object candidate HV 2112".Monthly Notices of the Royal Astronomical Society.479 (3):3101–3105.arXiv:1806.07399.Bibcode:2018MNRAS.479.3101B.doi:10.1093/mnras/sty1744.S2CID 67766043.
  5. ^Brandt, W. Niel; Podsiadlowski, Philipp (May 1995)."The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries".Monthly Notices of the Royal Astronomical Society.274 (2):461–484.arXiv:astro-ph/9412023.Bibcode:1995MNRAS.274..461B.doi:10.1093/mnras/274.2.461.S2CID 119408422.
  6. ^Oohara, Ken-ichi; Nakamura, Takashi (1989)."Three dimensional initial data of numerical relativity". In Evans, Charles R.; Finn, Lee S.; Hobill, David W. (eds.).Frontiers in Numerical Relativity. Cambridge University Press. p. 84.ISBN 978-0-521-36666-3.
  7. ^abcVanture, Andrew; Zucker, Daniel; Wallerstein, George (April 1999)."U Aquarii a Thorne–Żytkow Object?".The Astrophysical Journal.514 (2):932–938.Bibcode:1999ApJ...514..932V.doi:10.1086/306956.
  8. ^Eich, Chris; Zimmerman, Mark;Thorne, Kip;Żytkow, Anna N. (November 1989). "Giant and supergiant stars with degenerate neutron cores".The Astrophysical Journal.346 (1):277–283.Bibcode:1989ApJ...346..277E.doi:10.1086/168008.
  9. ^Cannon, Robert; Eggleton, Peter;Żytkow, Anna N.; Podsialowsky, Philipp (February 1992)."The structure and evolution of Thorne-Zytkow objects".The Astrophysical Journal.386 (1):206–214.Bibcode:1992ApJ...386..206C.doi:10.1086/171006.
  10. ^Cannon, Robert (August 1993)."Massive Thorne–Żytkow Objects – Structure and Nucleosynthesis".Monthly Notices of the Royal Astronomical Society.263 (4):817–838.Bibcode:1993MNRAS.263..817C.doi:10.1093/mnras/263.4.817.
  11. ^Foellmi, Cedric; Moffat, Anthony F. J. (2002). "Are Peculiar Wolf-Rayet Stars of Type WN8 Thorne-Zytkow Objects?". In Shara, Michael M. (ed.).Stellar Collisions, Mergers and their Consequences. ASP Conference Proceedings. Vol. 263.arXiv:astro-ph/0607217.Bibcode:2002ASPC..263..123F.ISBN 1-58381-103-6.
  12. ^Podsiadlowski, Philipp; Cannon, Robert C.; Rees, Martin J. (May 1995)."The evolution and final fate of massive Thorne-Żytkow objects".Monthly Notices of the Royal Astronomical Society.274 (2):485–490.Bibcode:1995MNRAS.274..485P.doi:10.1093/mnras/274.2.485.
  13. ^DeMarchi, Lindsay; Sanders, Jax R.; Levesque, Emily M. (Apr 2021)."Prospects for Multimessenger Observations of Thorne-Żytkow Objects".The Astrophysical Journal.911 (2): 101.arXiv:2103.03887.Bibcode:2021ApJ...911..101D.doi:10.3847/1538-4357/abebe1.
  14. ^abMereghetti, Sandro (1995). "A Spin-down Variation in the 6 Second X-Ray Pulsar 1E 1048.1-5937".Astrophysical Journal.455 (published December 1995): 598.Bibcode:1995ApJ...455..598M.doi:10.1086/176607.
  15. ^abBrandt, W. Niel; Podsiadlowski, Philipp; Sigurðsson, Steinn (1995)."On the high space velocity of X-ray Nova SCO 1994: Implications for the formation of its black hole".Monthly Notices of the Royal Astronomical Society.277 (2):L35 –L40.Bibcode:1995MNRAS.277L..35B.doi:10.1093/mnras/277.1.L35.
  16. ^abMcMillan, Paul (2018)."Gaia DR2 Confirms that Candidate Thorne-Żytkow Object HV 2112 is in the Small Magellanic Cloud".Research Notes of the American Astronomical Society.2 (2) (published May 2018): 18.Bibcode:2018RNAAS...2...18M.doi:10.3847/2515-5172/aac0fb.S2CID 125376171.
  17. ^abTout, Christopher (2014)."HV2112, a Thorne-Zytkow object or a super asymptotic giant branch star".Monthly Notices of the Royal Astronomical Society.445 (published November 2014):L36 –L40.arXiv:1406.6064.Bibcode:2014MNRAS.445L..36T.doi:10.1093/mnrasl/slu131.
  18. ^abWorley, Clare (2016)."The proper motion of HV2112: a TŻO candidate in the SMC".Monthly Notices of the Royal Astronomical Society.459 (1) (published June 2016):L31 –L35.arXiv:1602.08479.Bibcode:2016MNRAS.459L..31W.doi:10.1093/mnrasl/slw034.
  19. ^O'Grady, Anna (2020)."Cool, Luminous, and Highly Variable Stars in the Magellanic Clouds from ASAS-SN: Implications for Thorne-Żytkow Objects and Super-asymptotic Giant Branch Stars".Astrophysical Journal.901 (2) (published September 2020): 135.arXiv:2008.06563.Bibcode:2020ApJ...901..135O.doi:10.3847/1538-4357/abafad.S2CID 221140015.
  20. ^abTabernero, Hugo M.; Dorda Laforet, Ricardo; Negueruela Díez, Ignacio; Marfil, Emilio Gómez (2021). "The nature of VX Sagitarii".Astronomy & Astrophysics.646: A98.arXiv:2011.09184.Bibcode:2021A&A...646A..98T.doi:10.1051/0004-6361/202039236.S2CID 227013580.
  21. ^Farmer, R.; Renzo, M.; Götberg, Y.; Bellinger, E.; Justham, S.; De Mink, S. E. (2023)."Observational predictions for Thorne–Żytkow objects".Monthly Notices of the Royal Astronomical Society.524 (2):1692–1709.arXiv:2305.07337.doi:10.1093/mnras/stad1977.
  22. ^abcKuchner, Marc J.; Vakil, David; Smith, Verne V.;Lambert, David L.; Plez, Bertrand; Phinney, E. Sterl (May 30 – June 2, 2000). Shara, Michael M. (ed.).A Spectroscopic Search for Massive Thorne-Żytkow Objects(PDF). Stellar Collisions, Mergers and Their Consequences. ASP Conference Series. Vol. 263. American Museum of Natural History, New York. pp. 131–136.Bibcode:2002ASPC..263..131K.ISBN 1-58381-103-6.
  23. ^Eisner, Nora L.; Johnston, Cole; Toonen, Silvia; Frost, Abigail J.; Janssens, Soetkin; Lintott, Chris J.; Aigrain, Suzanne; Sana, Hugues; Abdul-Masih, Michael; Arellano-Córdova, Karla Z.; Beck, Paul G.; Bordier, Emma; Cannon, Emily; Escorza, Ana; Fabry, Matthias; Hermansson, Lars; et al. (2022-04-01)."Planet Hunters TESS IV: a massive, compact hierarchical triple star system TIC 470710327".Monthly Notices of the Royal Astronomical Society.511 (4):4710–4723.arXiv:2202.06964.Bibcode:2022MNRAS.511.4710E.doi:10.1093/mnras/stab3619.ISSN 0035-8711.
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Thorne–Żytkow_object&oldid=1297095279"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp