TheThermopolis Shale is ageologic formation which formed in west-centralNorth America in theAlbian age of theLate Cretaceous period. Surface outcroppings occur in centralCanada, and theU.S. states ofMontana andWyoming. The rock formation was laid down over about 7 million years by sediment flowing into theWestern Interior Seaway. The formation's boundaries and members are not well-defined bygeologists, which has led to different definitions of the formation. Some geologists conclude the formation should not have a designation independent of the formations above and below it. A range ofinvertebrate and small and largevertebratefossils andcoprolites are found in the formation.
The Western Interior Seaway was aninland sea that existed from theLate Jurassic (161.2 ± 4.0 to 145.5 ± 4.0million years ago [Ma]) to the end of thePaleogene (66 to 23.03 Ma).[1] It existed in the middle ofNorth America, extending from theArctic Ocean to theGulf of Mexico. It was roughly 3,000 miles (4,800 km) long and 1,000 miles (1,600 km) wide.[2] The seaway was relatively shallow, with a maximum depth estimated at 660 to 1,640 feet (200 to 500 m).[3]
Aforeland basin existed just to the east of theSevier orogenic belt, which was inundated by the Western Interior Seaway. Aforearc on the western side of the basin made this deeper than the eastern side, encouraging the build-up of sediment and, in time, sedimentary rock.[4][5][6] Erosion of theWestern Cordillera also contributed to the build-up of sedimentary rock on the western edge of the basin, while the more low-lying area to the east provided much less.[7] Changes in the amount, type, rate, and other aspects of the sedimentation were caused byuplift,subsidence,sea level changes, and other factors.[8] The water in the basin made at least two major advances and one major retreat during the Cretaceous,[9] adding complexity to the rock and permitting the creation ofriverine, marsh, andestuarine rock[10] in addition to the principal shallow and deepmarine rock.[11]
Dating ofbentonite andpalynological evidence indicate that the Lower Thermopolis Member was deposited between 100.3 and 98.5 Ma.[12][13] A study ofInoceramidaebivalves confirmed a Late Albian age.[14][15] Deposition of the upper three members of the Thermopolis Shale occurred over approximately 7 million years.[16]
The Thermopolis Shale was first identified in 1914 by geologist Ferdinand F. Hintze, Jr. He called it the "Lower Benton Shale", and included the Mowry Shale in the same formation. Hintze described three members: The basal "rusty beds", a lower shale, a 25-to-40-foot (7.6 to 12.2 m) thick "Muddy Sand" (muddy sandstone), and an upper shale member.[17][18] (The fourth member of the "Lower Benton Shale" was the Mowry Shale.)[17]
The Thermopolis Shale was first named by geologist Charles T. Lupton in 1916.[18] Lupton described the rocks as a formation lyingconformably atop the Cloverly Formation, and conformably underlying the Mowry Shale.[19][18] The Thermopolis Shale was the basal of four formations making up the Colorado Group. He described the Thermopolis Shale as Late Cretaceous in age,[19][18] generally dark in color, from 710 feet (220 m) thick, and with sandstonelenses common. At least one member of the Thermopolis Shale was also noted, a "muddy sand" layer about 15 to 55 feet (4.6 to 16.8 m) thick. Notype locality was identified, but the formation was named for the town ofThermopolis inHot Springs County, Wyoming—where, nearby, outcroppings of the shale were well exposed.[19] Lupton's division of the Thermopolis Shale was adopted by theUnited States Geological Survey and used for the next 50 years.[20]
The stratigraphic history of the Thermopolis Shale was first outlined by geologist Don L. Eicher in 1962.[21][22]
The Thermopolis Shale belongs to both theColorado Group andDakota Formation.[23] Both historically[24] and currently,[25][23] thestratigraphic units in these groups, and in the Thermopolis Shale, have been unclear, and the nomenclature used by geologists is not standardized. The identification of beds, members, and formations and their names have changed over time as well.[23][a]
The Thermopolis Shale is said by Eicher[20] to overlie theCloverly Formation, although Rice,[27] Porteret al.,[12] and Lash[28] that in Montana and Wyoming theKootenai Formation is geologically equivalent to the Cloverly Formation and thus conclude that the Thermopolis Shale overlies the Kootenai Formation. There is disagreement as to the stratigraphic definition of the basal member of the Thermopolis Shale, however. Eicher has argued that the "rusty beds" division is clearly distinguishable in many ways from the Cloverly Formation, and thus belongs to the Thermopolis Shale.[29] Seeland and Brauch assigned the "rusty beds" to the Cloverly Formation in 1975,[26] an assessment concurred with by Finn in 2010.[30] Porteret al., however, classified the "rusty beds" as part of theFall River Sandstone in 1997.[12]
What constitutes the upper boundary of the Thermopolis Shale is disputed, making it difficult to identify what overlays the Thermopolis Shale. In 1922, Collier identified the beds below the Mowry Shale as the Nefsy shale member of theGraneros Shale. This left the Thermopolis Shale underlying the Graneros Shale.[31] But Rubey assigned these rocks to the Mowry Shale in 1931, so that now the Thermopolis Shale underlay the Mowry Shale.[32] Eicher redefined these beds in 1960 as theShell Creek Shale, separating them from the Mowry Shale.[33] This effectively put the Thermopolis Shale below the Muddy Sandstone Formation.[34][b] In 1998, Porter et al. identified the Shell Creek Shale as the upper member of the Thermopolis Shale,[35] a position with which Lash agreed in 2011.[36]
Depending on the definition of the shale, and the location,[37] the Thermopolis Shale varies widely in thickness. Chester N. Darton estimated the size of the formation at 800 feet (240 m) (including the "rusty beds") in 1906.[37] In 1914, Hintze described the formation as 720-to-770-foot (220 to 230 m) deep.[17] Hewett and Lupton reported in 1917 that the shale (including the "rusty beds") to be 400 to 800 feet (120 to 240 m) thick in theBighorn Basin,[38] while Finn (not including the "rusty beds" reported a thickness in the same area of 125 to 230 feet (38 to 70 m).[30] On theWind River Indian Reservation of Wyoming, using the inclusive definition, it was reported to be a more robust 320 to 450 feet (98 to 137 m) thick.[26] It is only 10 feet (3.0 m) thick in theShirley Basin of southwest central Wyoming.[39]
Generally speaking, the Thermopolis Shale consists of a dark gray to black shale,[30][26] with thin layers of bentonite,[30][40] sandyclaystone, andsiltstone interspersed throughout the shale.[30] Depending on the stratigraphic definition of the formation, a gray, thinly-beddedsandstone member exists between the upper and lower members.[26]
For the purposes of this article, the definition of the Thermopolis Shale used by Porteret al.[12][35] and Lash[41] will be used, recognizing (as Condon does) that there is scientific disagreement about this issue.[25] Using this definition, there are fourmembers of the Thermopolis Shale:[36]
The "rusty beds" Member—This basal member of the Thermopolis Shale was first described by Nelson H. Darton in 1904, who noted the sandy nature of this shale and its rusty brown color.[42] The color was attributed to the presence ofiron, and Darton coined the term "rusty series" in 1906.[37] The first geologist to use the term "rusty beds", however, was Chester W. Washburne in 1908.[43] These rocks were laid down as the level of the Western Interior Seaway began a major rise. Erosion of thelacustrine Kootenai Formation occurred,[c] creating a nonconformity as the new "rusty beds" rock was laid down.[45][46] In some places, the entire upper Himes Member of the Cloverly Formation had eroded, allowing the "rusty beds" to lie disconformably on the medial Little Sheep Member.[47] The "rusty beds" consist of thin layers of reddish-brown sandstone between 3 and 18 inches (7.6 and 45.7 cm) thick, separated by leaves of black shale between 1 and 12 inches (2.5 and 30.5 cm) thick.[43] The basal beds of the "rusty beds" are probably estuarine ordeltaic in nature.[48] The member was estimated as between 20 feet (6.1 m)[43][49] and 200 feet (61 m)[37] in thickness. The "rusty beds" member is geologically equivalent to the Fall River Sandstone,Greybull Sandstone, and some members of theDakota Formation.[36]
Lower Thermopolis Member—This member of the Thermopolis Shale was first briefly described by Darton in 1904,[42] and more completely by Washburne in 1908.[43] The member has remained unnamed or only informally named,[26] usually being only referred to as the Lower Thermopolis Member.[36] These rocks were deposited as the northern and southern portions of the Western Interior seaway linked together,[45][50] and represents deposition during the maximum "transgression" (rise in sea level) of the Western Interior Seaway.[51] The transition from the "rusty beds" to the Lower Thermopolis Member isgradational,[30] probably due to erosion or flooding.[46] The Lower Thermopolis Member was described by Washburne and Harshman as carbon-rich blackshale[43][18] with occasional sandstone lenses in its lower portion,[43] and E.N. Harshman noted it wasfissile.[18] Porter et al., however, described the rock in 1993 as mudstone or siltstone,[46] implying a lack of fissility. The Lower Thermopolis Member is geologically equivalent to theSkull Creek Shale.[36]
Edgarosaurus muddi, a polycotylid plesiosaur found in the Upper Thermopolis Member.
Muddy Sandstone Member—This member of the Thermopolis Shale was first briefly described by Darton in 1904,[42] and much more completely by Hintze in 1914. Hintze described it as a widespread almost white sandstone member, 25 to 40 feet (7.6 to 12.2 m) thick, with small, uniform, poorly cemented grains. Hintze called this member the "Muddy sand", after the terminology used by oil and gas drillers in Wyoming.[52] It remained informally known as the "Muddy sand" into the 1960s, despite widespread acknowledgement among geologists that it was significant and widely occurring and worthy of a formal name.[53] By 1972, the member had received the formal name "Muddy Sandstone Member".[18][d] The Muddy Sandstone began to be laid down during a period when water levels in the Western Interior Seaway dropped,[45][51] and this deposition continued once sea levels rose again.[54][50][15] An erosional unconformity occurred while the sea receded,[15] over which estuarine andfluvial deposits were laid down as the Muddy Sandstone.[54] Thus, in some areas contact with the overlying Muddy Sandstone is sharp and unconformable, while in others it is conformable and gradational.[30] Deposition of the Muddy Sandstone continued around the foreland basin's margins, while the Upper Thermopolis Member was laid down conformably above the Muddy Sandstone in the basin's interior.[50][15] The Muddy Sandstone consists of a number of thin beds[18][26] of fine-grained,silty sandstone ofbuff, brownish-grey,[18] or grey color.[18][26] It is shaly, contains carbon flecks andpyrite crystals, and whenweathered is either buff or grey. Some beds exhibit ripple marks.[18] The sandstone is interbedded with thin beds of shale, siltstone,[18] and (occasionally) bentonite.[12][34][55] Lupton estimated the Muddy Sandstone's thickness at 10 to 55 feet (3.0 to 16.8 m) in thickness,[56] although Porter et al. have pointed out that it varies widely in thickness from place to place.[12] David Seeland and Early Brauch have concluded that is because pre-Laramide geologic structures or topography probably governed the distribution of Muddy Sandstone deposits.[57] The Muddy Sandstone Member is geologically equivalent to theBirdhead Sandstone.[36]
Upper Thermopolis Member—This member of the Thermopolis Shale was first briefly described by Darton in 1904,[42] and more completely by Washburne in 1908.[43] Norman Mills was the first to use the term "Upper Thermopolis" in 1956,[58][59] although the member remained formally unnamed.[60][26][21][36] The Upper Thermopolis Member was laid down conformably atop the Muddy Sandstone in the foreland basin's interior during the latter part of the Western Interior Seaway's second transgression.[50][15] Washburne described the member as consisting of bluish-black shale, interbedded very occasionally with beds of volcanic ash and bentonite in the upper part.[43] Lupton argued for two distinct divisions in the member: Lower beds of soft, black shale about 170 feet (52 m) thick, and upper beds of hard shale with sandstone lenses about 230 feet (70 m) thick.[49] Harshman has provided evidence that the upper beds are a transitional zone leading to the Mowry Shale. He observed that the upper beds consist primarily of thin,limy, silty sandstone and silty shale beds interbedded with dense,siliceous Mowry Shale with the occasional bed of silty lignite. The sandstone beds exhibit mud cracks and root tubes which indicate apaludal (marsh deposited) origin. The differences between the upper and lower beds led Harshman to conclude that some of the sandier beds near the base of the Upper Thermopolis Member may belong to the Muddy Sandstone Member.[18][e] Seeland and Brauch also found extensive evidence of gradational contact with the overlying Mowry Shale.[26] The Muddy Sandstone Member is geologically equivalent to theShell Creek Shale.[36]
Surface outcroppings of the Thermopolis Shale occur in centralCanada, and theU.S. states ofMontana andWyoming.[54] Marine-deposited rock thins toward the west, while nonmarine-deposited rock thins toward the east.[10] The marine-deposited rock is primarily shale, with somelimestone,sandstone, andsiltstone. The nonmarine rock is primarily sandstone, with somecoal, shale,"black" or carbonaceous shale, and siltstone.[10]
^For example, Seeland and Brauch in 1975 identified just three members of the Thermopolis Shale in 1975: The Lower Member, the Muddy Sandstone, and the Upper Member.[26] The "rusty beds" member was assigned to the Cloverly Formation. Condon points out that theUnited States Geological Survey (USGS) elevated the Muddy Sandstone Member toformation rank in 1976, and no longer recognized the Thermopolis Shale or Cloverly Formation as a stratigraphic unit in Montana. It also no longer recognized the Shell Creek Formation as a stratigraphic unit in Montana (placing the Shell Creek beds with the Mowry Shale), but continued to do so in Wyoming. But in 1993 and again in 1997, geologists with theMontana Bureau of Mines and Geology (MBMG) mapped the Thermopolis Shale in several areas of northern and central Montana, identifying not only the Thermopolis Shale as a formation, but several members as well. Moreover, the MBMG did not recognize the Muddy Sandstone as a formation. It identified the Shell Creek shale as a distinct stratigraphic unit, and recognized it as a member of the Thermopolis Shale.[25]
^The USGS in 1976 agreed that the Muddy Sandstone should be a formation, not a member. However, it no longer recognized the Thermopolis Shale as a formation, ranking it as a member of the Kootenai Formation. Thus, the Kootenai Formation is said by USGS to underlie the Muddy Sandstone Formation.[27]
^Lash, however, regarded it as officially unnamed in 2011.[36]
^Seeland and Brauch characterized the Upper Thermopolis Member as shale in 1975.[26] More recently, Dolson and Muller[50] and Lash[15] have described the Upper Thermopolis Member as mudstone, rather than fissible shale or sandstone.
Cobban, William A. (October 1951). "Colorado Shale of central and northwestern Montana and equivalent rocks of Black Hills".American Association of Petroleum Geologists Bulletin.
Dolson, John; Miller, Dave; Evetts, M.J.; Stein, J.A. (March 1991). "Regional paleotopographic trends and production, Muddy Sandstone (Lower Cretaceous) central and northern Rocky Mountains".American Association of Petroleum Geologists Bulletin:409–435.
Dolson, John C.; Muller, Davis S. (1994). "Stratigraphic evolution of the Lower Cretaceous Dakota Group, Western Interior, USA". In Caputo, Mario V.; Peterson, James A.; Franczyk, Karen J. (eds.).Mesozoic Systems of the Rocky Mountain Region. Denver: Rocky Mountain Section SEPM (Society of Economic Paleontologists and Mineralogists).
Dyman, Thaddeus S.; Merewether, E. Allen; Molenaar, C.M.; Cobban, William A.; Obradovich, John D.; Weimer, Robert J.; Bryant, William A. (1994). "Stratigraphic transects for Cretaceous rocks, Rocky Mountains and Great Plains". In Caputo, Mario V.; Peterson, James A.; Franczyk, Karen J. (eds.).Mesozoic Systems of the Rocky Mountain Region. Denver: Rocky Mountain Section SEPM (Society of Economic Paleontologists and Mineralogists).
Eicher, Don L. (1962). "Biostratigraphy of the Thermopolis, Muddy, and Shell Creek Formations". In Enyert, Richard L.; Curry, William H. III (eds.).Symposium on Early Cretaceous Rocks of Wyoming and Adjacent Areas: Wyoming Geological Association 17th Annual Field Conference Guidebook. Casper, Wyo.: Wyoming Geological Association.
Mills, Norman K. (1956). "Subsurface stratigraphy of the pre-Niobrara Formations in the Bighorn Basin, Wyoming". In Burk, C.A. (ed.).Wyoming Stratigraphy. Part I: Subsurface Stratigraphy of the Pre-Niobrara Formations in Wyoming. Casper, Wyo.: Wyoming Geological Association.
Obradovich, John D.; Cobban, William A.; Merewether, E. Allen; Weimer, Robert J. (July 1997). "A time framework for the late Albian and early Cenomanian strata of northern Wyoming and Montana". In Campen, Elizabeth B. (ed.).1997 Bighorn Basin Symposium Guidebook. Billings, Mont.: Geological Society of America. p. 36.
Porter, Karen W.; Dyman, Thaddeus S.; Tysdal, Russell G. (1993). "Sequence boundaries and other surfaces in Lower and lower Upper Cretaceous rocks of central and southwest Montana: A preliminary report". In Hunter, L.D. Vern (ed.).Energy and Mineral Resources of Central Montana. Billings, Mont.: Montana Geological Society.
Porter, Karen W.; Dyman, Thaddeus S.; Thompson, Gary G.; Lopez, G.E.; Cobban, William A. (1997). Six Outcrop Sections of the Marine Lower Cretaceous, Central Montana. Report Investigation 3 (Report). Helena, Mont.: Montana Bureau of Mines and Geology.
Porter, Karen W.; Dyman, Thaddeus S.; Cobban, William A.; Reinson, Gerry E. (1998). "Post-Mannville/Kootenai Lower Cretaceous Rocks and Reservoirs, North-Central Montana, Southern Alberta and Saskatchewan". In Christopher, James Ellis; Paterson, D.F.; Bend, Stephen Leonard (eds.). Eighth International Williston Basin Symposium (Report). Bismarck, N.D.: North Dakota Geological Society.
Rice, Dudley D. (1976). "Revision of Cretaceous nomenclature of the northern Great Plains in Montana, North Dakota, and South Dakota". In Cohee, George Vincent; Wright, W.B. (eds.).Changes in stratigraphic nomenclature by the U.S. Geological Survey, 1975. U.S. Geological Survey Bulletin 1422-A. Washington, D.C.: U.S. Geological Survey.
Weimer, Robert J.; Obradovich, John D.; Cobban, William A.; Merewether, E. Allen (1997). "A time framework for the late Albian and early Cenomanian strata of northern Wyoming and Montana: Bighorn Basin: 50 years of the frontier". In Campen, Elizabeth B. (ed.).Evolution of the geology of the Bighorn Basin: 1997 Field Trip and Symposium. Billings, Mont.: Yellowstone Bighorn Research Association.
Williams, Gordon D.; Stelck, Charles R. (1975). "Speculations of the Cretaceous palaeogeography of North America". In Caldwell, W.G.E. (ed.).The Cretaceous System in the Western Interior of North America. Special Paper 13. Waterloo, Ont.: Geological Association of Canada.