Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Thermal quantum field theory

From Wikipedia, the free encyclopedia
Quantum field theory at non-zero temperatures

Intheoretical physics,thermal quantum field theory (thermal field theory for short) orfinite temperature field theory is a set of methods to calculate expectation values of physical observables of aquantum field theory at finitetemperature.

There are three main formalisms used to describe finite-temperature states:[1]

  • Matsubara formalism, based on evolving the system in imaginary time.
  • SchwingerKeldysh formalism, based on the real-time evolution, allowing the treatment of non-equilibrium processes.
  • Umezawa formalism (thermo field dynamics), which is based on real-time evolution, and introduces a doubledHilbert space to represent thermal states.[2]

Matsubara formalism

[edit]

In the Matsubara formalism, the basic idea (due toFelix Bloch[3]) is that the expectation values of operators in acanonical ensemble

A=Tr[exp(βH)A]Tr[exp(βH)]{\displaystyle \langle A\rangle ={\frac {{\mbox{Tr}}\,[\exp(-\beta H)A]}{{\mbox{Tr}}\,[\exp(-\beta H)]}}}

may be written asexpectation values in ordinaryquantum field theory[4] where the configuration is evolved by animaginary timeτ=it(0τβ){\displaystyle \tau =it(0\leq \tau \leq \beta )}. One can therefore switch to aspacetime withEuclidean signature, where the above trace (Tr) leads to the requirement that allbosonic andfermionic fields be periodic and antiperiodic, respectively, with respect to the Euclidean time direction with periodicityβ=1/(kT){\displaystyle \beta =1/(kT)} (we are assumingnatural units=1{\displaystyle \hbar =1}). This allows one to perform calculations with the same tools as in ordinary quantum field theory, such asfunctional integrals andFeynman diagrams, but with compact Euclidean time. Note that the definition of normal ordering has to be altered.[5]

Inmomentum space, this leads to the replacement of continuous frequencies by discrete imaginary (Matsubara) frequenciesvn=n/β{\displaystyle v_{n}=n/\beta } and, through thede Broglie relation, to a discretized thermal energy spectrumEn=2nπkT{\displaystyle E_{n}=2n\pi kT}. This has been shown to be a useful tool in studying the behavior of quantum field theories at finite temperature.[6][7][8][9]

It has been generalized to theories with gauge invariance and was a central tool in the study of a conjectured deconfiningphase transition ofYang–Mills theory.[10][11] In this Euclidean field theory, real-time observables can be retrieved byanalytic continuation.[12] The Feynman rules for gauge theories in the Euclidean time formalism, were derived by C. W. Bernard.[10]

An alternative approach which is of interest tomathematical physics is to work withKMS states.

Schwinger–Keldysh formalism

[edit]
Main article:Keldysh formalism

A path-ordered approach to real-time formalisms includes theSchwinger–Keldysh formalism and more modern variants.[13] It involves replacing a straight time contour from (large negative) real initial timeti{\displaystyle t_{i}} totiiβ{\displaystyle t_{i}-i\beta } by one that first runs to (large positive) real timetf{\displaystyle t_{f}} and then suitably back totiiβ{\displaystyle t_{i}-i\beta }.[14] In fact all that is needed is one section running along the real time axis, as the route to the end point,tiiβ{\displaystyle t_{i}-i\beta }, is less important.[15] Thepiecewise composition of the resulting complex time contour leads to a doubling of fields and more complicated Feynman rules, but obviates the need ofanalytic continuations of the imaginary-time formalism.

As well as Feynman diagrams and perturbation theory, other techniques such as dispersion relations and the finite temperature analog ofCutkosky rules can also be used in the real time formulation.[16][17]

Umezawa formalism

[edit]

The alternative approach to real-time formalisms is an operator based approach usingBogoliubov transformations, known asUmezawa formalism orthermo field dynamics.[2][18]

See also

[edit]

References

[edit]
  1. ^Mustafa, Munshi G. (2023-08-01)."An introduction to thermal field theory and some of its application".The European Physical Journal Special Topics.232 (9):1369–1457.arXiv:2207.00534.doi:10.1140/epjs/s11734-023-00868-8.ISSN 1951-6401.
  2. ^abN.P. Landsman and Ch.G. van Weert (1987). "Real- and imaginary-time field theory at finite temperature and density".Physics Reports.145 (3–4):141–249.Bibcode:1987PhR...145..141L.doi:10.1016/0370-1573(87)90121-9.
  3. ^Bloch, F. (1932). "Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika".Z. Phys.74 (5–6):295–335.Bibcode:1932ZPhy...74..295B.doi:10.1007/BF01337791.S2CID 120549836.
  4. ^Jean Zinn-Justin (2002).Quantum Field Theory and Critical Phenomena. Oxford University Press.ISBN 978-0-19-850923-3.
  5. ^T.S. Evans and D.A. Steer (1996). "Wick's theorem at finite temperature".Nucl. Phys. B.474 (2):481–496.arXiv:hep-ph/9601268.Bibcode:1996NuPhB.474..481E.doi:10.1016/0550-3213(96)00286-6.S2CID 119436816.
  6. ^ D.A. Kirznits JETP Lett. 15 (1972) 529.
  7. ^ D.A. Kirznits and A.D. Linde, Phys. Lett. B42 (1972) 471; it Ann. Phys. 101 (1976) 195.
  8. ^Weinberg, S. (1974). "Gauge and Global Symmetries at High Temperature".Phys. Rev. D.9 (12):3357–3378.Bibcode:1974PhRvD...9.3357W.doi:10.1103/PhysRevD.9.3357.
  9. ^L. Dolan, and R. Jackiw (1974). "Symmetry behavior at finite temperature".Phys. Rev. D.9 (12):3320–3341.Bibcode:1974PhRvD...9.3320D.doi:10.1103/PhysRevD.9.3320.
  10. ^ab C. W. Bernard, Phys. Rev. D9 (1974) 3312.
  11. ^ D.J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43.
  12. ^T.S. Evans (1992). "N-Point Finite Temperature Expectation Values at Real Times".Nucl. Phys. B.374 (2):340–370.arXiv:hep-ph/9601268.Bibcode:1992NuPhB.374..340E.doi:10.1016/0550-3213(92)90357-H.S2CID 120072328.
  13. ^A.J. Niemi, G.W. Semenoff (1984). "Finite Temperature Quantum Field Theory in Minkowski Space".Annals of Physics.152 (1):105–129.Bibcode:1984AnPhy.152..105N.doi:10.1016/0003-4916(84)90082-4.
  14. ^Zinn-Justin, Jean (2000). "Quantum field theory at finite temperature: An introduction".arXiv:hep-ph/0005272.
  15. ^T.S. Evans (1993). "New Time Contour for Equilibrium Real-Time Thermal Field-Theories".Phys. Rev. D.47 (10):R4196 –R4198.arXiv:hep-ph/9310339.Bibcode:1993PhRvD..47.4196E.doi:10.1103/PhysRevD.47.R4196.PMID 10015491.S2CID 119486408.
  16. ^R.L. Kobes, G.W. Semenoff (1985). "Discontinuities of Green Functions in Field Theory at Finite Temperature and Density".Nucl. Phys. B.260 (3–4):714–746.Bibcode:1985NuPhB.260..714K.doi:10.1016/0550-3213(85)90056-2.
  17. ^R.L. Kobes, G.W. Semenoff (1986). "Discontinuities of Green Functions in Field Theory at Finite Temperature and Density".Nucl. Phys. B.272 (2):329–364.Bibcode:1986NuPhB.272..329K.doi:10.1016/0550-3213(86)90006-4.
  18. ^H. Chiu;H. Umezawa (1993). "A unified formalism of thermal quantum field theory".International Journal of Modern Physics A.9 (14): 2363 ff.Bibcode:1994IJMPA...9.2363C.doi:10.1142/S0217751X94000960.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Thermal_quantum_field_theory&oldid=1315372588"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp