Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tetrahydroisoquinoline

From Wikipedia, the free encyclopedia
This article is about the simple heterocyclic amine. For the selective MC4 agonist, seeTHIQ.
Tetrahydroisoquinoline
Names
Preferred IUPAC name
1,2,3,4-Tetrahydroisoquinoline
Other names
AMPH-CR; "Amphetamine-Conformationally Restrained"; AMPH-THIQ; AMPH/THIQ
Identifiers
3D model (JSmol)
AbbreviationsTIQ, THIQ
ChEMBL
ChemSpider
ECHA InfoCard100.001.864Edit this at Wikidata
EC Number
  • 202-050-0
RTECS number
  • NX4900000
UNII
  • InChI=1S/C9H11N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-4,10H,5-7H2 checkY
    Key: UWYZHKAOTLEWKK-UHFFFAOYSA-N checkY
  • InChI=1/C9H11N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-4,10H,5-7H2
    Key: UWYZHKAOTLEWKK-UHFFFAOYAB
  • c1ccc2c(c1)CCNC2
Properties
C9H11N
Molar mass133.19 g/mol
AppearanceDeep yellow liquid
Density1.05 g/mL
Melting point−30 °C (−22 °F; 243 K)
Boiling point235 to 239 °C (455 to 462 °F; 508 to 512 K)
Hazards
GHS labelling:[1]
GHS05: CorrosiveGHS06: ToxicGHS08: Health hazard
Danger
H301,H310,H314,H332,H371,H412
P260,P261,P262,P264,P270,P271,P273,P280,P301+P310,P301+P330+P331,P302+P350,P302+P352,P303+P361+P353,P304+P312,P304+P340,P305+P351+P338,P309+P311,P310,P312,P322,P330,P332+P313,P337+P313,P361,P362,P363,P403+P233,P405,P501
Flash point99 °C (210 °F; 372 K) (closed cup)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Tetrahydroisoquinoline (TIQ orTHIQ), also known asAMPH-CR, is anorganic compound with the chemical formula C9H11N. Classified as asecondary amine, it is derived fromisoquinoline by hydrogenation. It is a colorless viscous liquid that is miscible with most organic solvents. The tetrahydroisoquinoline skeleton is encountered in a number of bioactive compounds and drugs.[2][3]

Pharmacology

[edit]

THIQ is aconformationally restrained (CR) orcyclizedanalogue ofβ-phenethylamine andamphetamine and is also known as AMPH-CR.[4][5] In contrast to amphetamine however, THIQ fails to substitute fordextroamphetamine in rodentdrug discrimination tests, suggesting that it lacksstimulant effects.[4][5] Similar findings have been made for other tetrahydroisoquinoline analogues ofpsychoactive phenethylamines, for instanceDOM-CR.[4][5] In any case, THIQ does substitute forTDIQ (MDTIQ), aselectiveα2-adrenergic receptorligand, indicating that it is notpharmacologically inactive.[4][5]

Reactions

[edit]

As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. It can be dehydrogenated to give isoquinoline and hydrogenated todecahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the correspondingnitrone usinghydrogen peroxide, catalyzed byselenium dioxide.[6]

Toxicology

[edit]

Tetrahydroisoquinoline derivatives may be formed in the body as metabolites of some drugs, and this was once thought to be involved in the development ofalcoholism.[7] This theory has now been discredited and is no longer generally accepted by the scientific community,[8] but endogenous production of neurotoxic tetrahydroisoquinoline derivatives such asnorsalsolinol continue to be investigated as possible causes for some conditions such asParkinson's disease.[9][10][11][12][13][14]

Tetrahydroisoquinolines

[edit]
Main article:Substituted tetrahydroisoquinoline

The tetrahydroisoquinoline skeleton is present in a number of drugs,[3] such astubocurarine, one of thequaternary ammonium muscle relaxants. Drugs based on 4-substituted tetrahydroisoquinolines includenomifensine[15] anddiclofensine. They can be prepared byN-alkylation of benzyl amines with haloacetophenones.[16] Naturally occurring tetrahydroisoquinolines includecherylline[17] andlatifine.

Esproquin,[18] which shows hypotensive activity by virtue of its α-adrenergic blocking properties, is made from THIQ.

See also

[edit]

References

[edit]
  1. ^"1,2,3,4-Tetrahydroisoquinoline".pubchem.ncbi.nlm.nih.gov. Retrieved12 December 2021.
  2. ^Mitchenson, Andrew (2000). "Saturated nitrogen heterocycles".Journal of the Chemical Society, Perkin Transactions 1 (17):2862–2892.doi:10.1039/A908537H.
  3. ^abScott, Jack D.; Williams, Robert M. (2002). "Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics".Chemical Reviews.102 (5):1669–1730.doi:10.1021/cr010212u.PMID 11996547.
  4. ^abcdGlennon RA, Young R (5 August 2011). "Role of Stereochemistry in Drug Discrimination Studies".Drug Discrimination. Wiley. p. 129–161.doi:10.1002/9781118023150.ch4.ISBN 978-0-470-43352-2. Retrieved22 May 2025.
  5. ^abcdGlennon RA, Young R, Rangisetty JB (May 2002). "Further characterization of the stimulus properties of 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline".Pharmacol Biochem Behav.72 (1–2):379–387.doi:10.1016/s0091-3057(01)00768-7.PMID 11900809.
  6. ^Murahashi, S. (1987). "Selenium dioxide catalyzed oxidation of secondary amines with hydrogen peroxide. Simple synthesis of nitrones from secondary amines".Tetrahedron Letters.28 (21):2383–2386.doi:10.1016/S0040-4039(00)96130-6.
  7. ^Blum, K.; Hamilton, M. G.; Hirst, M.; Wallace, J. E. (1978). "Putative role of isoquinoline alkaloids in alcoholism: a link to opiates".Alcoholism: Clinical and Experimental Research.2 (2):113–120.doi:10.1111/j.1530-0277.1978.tb04710.x.PMID 350073.,Altshuler, H. L.; Shippenberg (1982). "Tetrahydroisoquinoline and opioid substrates of alcohol actions".Progress in Clinical and Biological Research.90:329–344.PMID 7202207.,Myers, R. D. (1989). "Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms".Experientia.45 (5):436–443.doi:10.1007/BF01952025.PMID 2656285.S2CID 1513683.
  8. ^Myers, R. D. (1996). "Tetrahydroisoquinolines and alcoholism: where are we today?".Alcoholism: Clinical and Experimental Research.20 (3):498–500.doi:10.1111/j.1530-0277.1996.tb01081.x.PMID 8727243.,Musshoff, F.; Daldrup, T.; Bonte, W.; Leitner, A.; Lesch, O. M. (1996). "Formaldehyde-derived tetrahydroisoquinolines and tetrahydro-beta-carbolines in human urine".Journal of Chromatography B.683 (2):163–176.doi:10.1016/0378-4347(96)00106-5.PMID 8891913.,Sällström Baum, S.; Hill, R.; Kiianmaa, K.; Rommelspacher, H. (1999). "Effect of ethanol on (R)- and (S)-salsolinol, salsoline, and THP in the nucleus accumbens of AA and ANA rats".Alcohol (Fayetteville, N.Y.).18 (2–3):165–169.doi:10.1016/S0741-8329(98)00080-9.PMID 10456568.,Musshoff, F.; Lachenmeier, D. W.; Schmidt, P.; Dettmeyer, R.; Madea, B. (2005). "Systematic regional study of dopamine, norsalsolinol, and (R/S)-salsolinol levels in human brain areas of alcoholics".Alcoholism: Clinical and Experimental Research.29 (1):46–52.doi:10.1097/01.ALC.0000150011.81102.C2.PMID 15654290.
  9. ^Kotake Y, Tasaki Y, Makino Y, Ohta S, Hirobe M (December 1995). "1-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian CSF".Journal of Neurochemistry.65 (6):2633–8.doi:10.1046/j.1471-4159.1995.65062633.x.PMID 7595560.S2CID 39449026.
  10. ^McNaught KS, Carrupt PA, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Marsden CD (October 1998). "Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson's disease".Biochemical Pharmacology.56 (8):921–33.doi:10.1016/S0006-2952(98)00142-7.PMID 9776302.
  11. ^Lorenc-Koci E, Smiałowska M, Antkiewicz-Michaluk L, Gołembiowska K, Bajkowska M, Wolfarth S (2000). "Effect of acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline on muscle tone, metabolism of dopamine in the striatum and tyrosine hydroxylase immunocytochemistry in the substantia nigra, in rats".Neuroscience.95 (4):1049–59.doi:10.1016/S0306-4522(99)00511-4.PMID 10682712.S2CID 13549697.
  12. ^Storch A, Ott S, Hwang YI, Ortmann R, Hein A, Frenzel S, Matsubara K, Ohta S, Wolf HU, Schwarz J (March 2002). "Selective dopaminergic neurotoxicity of isoquinoline derivatives related to Parkinson's disease: studies using heterologous expression systems of the dopamine transporter".Biochemical Pharmacology.63 (5):909–20.doi:10.1016/S0006-2952(01)00922-4.PMID 11911843.
  13. ^Lorenc-Koci E, Antkiewicz-Michaluk L, Kamińska A, Lenda T, Zieba B, Wierońska J, Smiałowska M, Schulze G, Rommelspacher H (October 2008). "The influence of acute and chronic administration of 1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline on the function of the nigrostriatal dopaminergic system in rats".Neuroscience.156 (4):973–86.doi:10.1016/j.neuroscience.2008.08.050.PMID 18809471.S2CID 44658852.
  14. ^Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y, Murata M, Oikawa S (January 2009)."The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson's disease".Journal of Neurochemistry.108 (2):397–407.doi:10.1111/j.1471-4159.2008.05774.x.PMID 19012744.
  15. ^Schneider, C. S.; Weber, K. H.; Daniel, H.; Bechtel, W. D.; Boeke-Kuhn, K. (1984). "Synthesis and antidepressant activity of 4-aryltetrahydrothieno[2,3-c]pyridine derivatives".Journal of Medicinal Chemistry.27 (9):1150–1155.doi:10.1021/jm00375a011.PMID 6471069.
  16. ^BG 49761 
  17. ^cherylline
  18. ^Gray, Allan P.; Shiley, Richard H. (1973). "Preparation and cardiovascular actions of a group of tetrahydroisoquinoline derivatives".Journal of Medicinal Chemistry.16 (7):859–861.doi:10.1021/jm00265a028.ISSN 0022-2623.PMID 4146907.


Phenethylamines
Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
(and further-extended)
Catecholamines
(and close relatives)
Cyclized
phenethylamines
Phenylalkylpyrrolidines
2-Benzylpiperidines
(phenidates)
Phenylmorpholines
(phenmetrazines)
Phenyloxazolamines
(aminorexes)
Isoquinolines and
tetrahydroisoquinolines
2-Aminoindanes
2-Aminotetralins
Others / unsorted
Related compounds
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tetrahydroisoquinoline&oldid=1291679008"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp