Inmusic theory, atetrachord (Greek:τετράχορδoν;Latin:tetrachordum) is a series of four notes separated by threeintervals. In traditional music theory, a tetrachord always spanned the interval of aperfect fourth, a 4:3 frequency proportion (approx. 498cents)—but in modern use it means any four-note segment of ascale ortone row, not necessarily related to a particular tuning system.
The name comes fromtetra (from Greek—"four of something") andchord (from Greekchordon—"string" or "note"). In ancient Greek music theory,tetrachord signified a segment of thegreater and lesser perfect systems bounded byimmovable notes (Greek:ἑστῶτες); the notes between these weremovable (Greek:κινούμενοι). It literally meansfour strings, originally in reference to harp-like instruments such as thelyre or the kithara, with the implicit understanding that the four strings produced adjacent (i.e., conjunct) notes.
Modern music theory uses theoctave as the basic unit for determining tuning, where ancient Greeks used the tetrachord. Ancient Greek theorists recognized that the octave is a fundamental interval but saw it as built from two tetrachords and awhole tone.[1]
Ancient Greek music theory distinguishes threegenera (singular:genus) of tetrachords. These genera are characterized by the largest of the three intervals of the tetrachord:

When the composite of the two smaller intervals is less than the remaining (incomposite) interval, the three-note group is called thepyknón (frompyknós, meaning "compressed"). This is the case for the chromatic and enharmonic tetrachords, but not the diatonic (meaning "stretched out") tetrachord.
Whatever the tuning of the tetrachord, its four degrees are named, in ascending order,hypate,parhypate,lichanos (orhypermese), andmese and, for the second tetrachord in the construction of the system,paramese,trite,paranete, andnete. Thehypate andmese, and theparamese andnete are fixed, and a perfect fourth apart, while the position of theparhypate andlichanos, ortrite andparanete, are movable.
As the three genera simply represent ranges of possible intervals within the tetrachord, variousshades (chroai) with specific tunings were specified. Once the genus and shade of tetrachord are specified, their arrangement can produce three main types of scales, depending on which note of the tetrachord is taken as the first note of the scale. The tetrachords themselves remain independent of the scales that they produce, and were never named after these scales by Greek theorists.[3]
In all cases, the extreme notes of the tetrachords, E – B, and A – E, remain fixed, while the notes in between are different depending on the genus.
Here are the traditionalPythagorean tunings of the diatonic and chromatic tetrachords:
| Diatonic | ||||||
|---|---|---|---|---|---|---|
| hypate | parhypate | lichanos | mese | |||
| 4/3 | 81/64 | 9/8 | 1/1 | |||
| │ | 256/243 | │ | 9/8 | │ | 9/8 | │ |
| −498¢ | −408¢ | −204¢ | 0¢ | |||
Problems playing this file? Seemedia help. | ||||||
| Chromatic | ||||||
|---|---|---|---|---|---|---|
| hypate | parhypate | lichanos | mese | |||
| 4/3 | 81/64 | 32/27 | 1/1 | |||
| │ | 256/243 | │ | 2187/2048 | │ | 32/27 | │ |
| −498¢ | −408¢ | −294¢ | 0¢ | |||
Here is a representative Pythagorean tuning of the enharmonic genus attributed toArchytas:
| Enharmonic | ||||||
|---|---|---|---|---|---|---|
| hypate | parhypate | lichanos | mese | |||
| 4/3 | 9/7 | 5/4 | 1/1 | |||
| │ | 28/27 | │ | 36/35 | │ | 5/4 | │ |
| −498¢ | −435¢ | −386¢ | 0¢ | |||
The number of strings on the classical lyre varied at different epochs, and possibly in different localities – four, seven and ten having been favorite numbers. Larger scales are constructed from conjunct or disjunct tetrachords. Conjunct tetrachords share a note, while disjunct tetrachords are separated by adisjunctive tone of 9/8 (a Pythagorean major second). Alternating conjunct and disjunct tetrachords form a scale that repeats in octaves (as in the familiardiatonic scale, created in such a manner from the diatonic genus), but this was not the only arrangement.
The Greeks analyzed genera using various terms, including diatonic, enharmonic, and chromatic. Scales are constructed from conjunct or disjunct tetrachords.
This is a partial table of thesuperparticular divisions by Chalmers after Hofmann.[who?][4]

–♭
–♭
–♭
(b–a–g–f). This tetrachord spans a tritone instead of a perfect fourth.
–♭
–♭
–
.Phrygian half cadence: i–v6–iv6–V in C minor (bassline: c–b♭–a♭–g)Tetrachords based uponequal temperament tuning were used to explain commonheptatonic scales. Given the following vocabulary of tetrachords (the digits give the number of semitones in consecutive intervals of the tetrachord, adding to five):
| Tetrachord | Halfstep String |
|---|---|
| Major | 2 2 1 |
| Minor | 2 1 2 |
| Harmonic | 1 3 1 |
| Upper Minor | 1 2 2 |
the following scales could be derived by joining two tetrachords with awhole step (2) between:[6][7]
| Component tetrachords | Halfstep string | Resulting scale |
|---|---|---|
| Major + major | 2 2 1 : 2 : 2 2 1 | Diatonic major |
| Minor + upper minor | 2 1 2 : 2 : 1 2 2 | Natural minor |
| Major + harmonic | 2 2 1 : 2 : 1 3 1 | Harmonic major |
| Minor + harmonic | 2 1 2 : 2 : 1 3 1 | Harmonic minor |
| Harmonic + harmonic | 1 3 1 : 2 : 1 3 1 | Double harmonic scale[8][9] or Gypsy major[10] |
| Major + upper minor | 2 2 1 : 2 : 1 2 2 | Melodic major |
| Minor + major | 2 1 2 : 2 : 2 2 1 | Melodic minor |
| Upper minor + harmonic | 1 2 2 : 2 : 1 3 1 | Neapolitan minor |
All these scales are formed by two complete disjunct tetrachords: contrarily to Greek and Medieval theory, the tetrachords change here from scale to scale (i.e., the C major tetrachord would be C–D–E–F, the D major one D–E–F♯–G, the C minor one C–D–E♭–F, etc.). The 19th-century theorists of ancient Greek music believed that this had also been the case in Antiquity, and imagined that there had existed Dorian, Phrygian or Lydian tetrachords. This misconception was denounced in Otto Gombosi's thesis (1939).[11]
Theorists of the later 20th century often use the term "tetrachord" to describe any four-note set when analysing music of a variety of styles and historical periods.[12] The expression "chromatic tetrachord" may be used in two different senses: to describe the special case consisting of a four-note segment of the chromatic scale,[13]or, in a more historically oriented context, to refer to the six chromatic notes used to fill the interval of a perfect fourth, usually found in descending bass lines.[14]It may also be used to describes sets of fewer than four notes, when used in scale-like fashion to span the interval of a perfect fourth.[15]
Allen Forte occasionally uses the termtetrachord to mean what he elsewhere calls atetrad or simply a "4-element set" – a set of any four pitches orpitch classes.[16] Intwelve-tone theory, the term may have the special sense of any consecutive four notes of a twelve-tone row.[17]
Tetrachords based upon equal-tempered tuning were also used to approximate common heptatonic scales in use in Indian, Hungarian, Arabian and Greek musics. Western theorists of the 19th and 20th centuries, convinced that any scale should consist of two tetrachords and a tone, described various combinations supposed to correspond to a variety of exotic scales. For instance, the following diatonic intervals of one, two or three semitones, always totaling five semitones, produce 36 combinations when joined bywhole step:[6]
| Lower tetrachords | Upper tetrachords |
|---|---|
| 3 1 1 | 3 1 1 |
| 2 2 1 | 2 2 1 |
| 1 3 1 | 1 3 1 |
| 2 1 2 | 2 1 2 |
| 1 2 2 | 1 2 2 |
| 1 1 3 | 1 1 3 |
Tetrachords separated by ahalfstep are said to also appear particularly in Indian music. In this case, the lower "tetrachord" totals six semitones (a tritone). The following elements produce 36 combinations when joined by halfstep.[6] These 36 combinations together with the 36 combinations described above produce the so-called "72 karnatic modes".[18]
| Lower tetrachords | Upper tetrachords |
|---|---|
| 3 2 1 | 3 1 1 |
| 3 1 2 | 2 2 1 |
| 2 2 2 | 1 3 1 |
| 1 3 2 | 2 1 2 |
| 2 1 3 | 1 2 2 |
| 1 2 3 | 1 1 3 |
Persian music divides the interval of a fourth differently than the Greek. For example,Al-Farabi describes four genres of the division of the fourth:[19]
He continues with four other possible genres "dividing the tone in quarters, eighths, thirds, half thirds, quarter thirds, and combining them in diverse manners".[20] Later, he presents possible positions of the frets on the lute, producing ten intervals dividing the interval of a fourth between the strings:[21]
| Frequency ratio: | 1 / 1 | 256 / 243 | 18 / 17 | 162 / 149 | 54 / 49 | 9 / 8 | 32 / 27 | 81 / 68 | 27 / 22 | 81 / 64 | 4 / 3 |
| Note name: | C | C♯- | C♯ | C | C | D | E♭- | E♭+ | E | E- | F |
| Cents: | 0 | 90 | 99 | 145 | 168 | 204 | 294 | 303 | 355 | 408 | 498 |
If one considers that the interval of a fourth between the strings of the lute (Oud) corresponds to a tetrachord, and that there are two tetrachords and amajor tone in an octave, this would create a 25 tone scale. A more inclusive description (whereOttoman,Persian, andArabic overlap), of the scale divisions is that of 24 quarter tones (see alsoArabian maqam). It should be mentioned that Al-Farabi's, among other Islamic musical treatises, also contained additional division schemes as well as providing a gloss of the Greek system, as Aristoxenian doctrines were often included.[22]
The tetrachord, a fundamentally incomplete fragment, is the basis of two compositional forms constructed upon repetition of that fragment: thecomplaint and the litany.
The descending tetrachord from tonic to dominant, typically in minor (e.g. A–G–F–E in A minor), had been used since the Renaissance to denote a lamentation. Well-known cases include the ostinato bass of Dido's ariaWhen I am laid in earth inHenry Purcell'sDido and Aeneas, theCrucifixus inJohann Sebastian Bach's Mass in B minor, BWV 232, or theQui tollis inMozart's Mass in C minor, KV 427, etc.[23] This tetrachord, known aslamento ("complaint", "lamentation"), has been used until today. A variant form, the full chromatic descent (e.g. A–G♯–G–F♯–F–E in A minor), has been known asPassus duriusculus in the BaroqueFigurenlehre.[full citation needed]
There exists a short, free musical form of theRomantic Era, calledcomplaint orcomplainte (Fr.) orlament.[24] It is typically a set of harmonicvariations inhomophonic texture, wherein the bass descends through some tetrachord, possibly that of the previous paragraph, but usually one suggesting aminor mode. This tetrachord, treated as a very shortground bass, is repeated again and again over the length of the composition.
Another musical form, of the same time period, is thelitany orlitanie (Fr.), orlytanie (OE spur).[25] It is also a set of harmonicvariations inhomophonic texture, but in contrast to the lament, here the tetrachordal fragment – ascending or descending and possibly reordered – is set in the upper voice in the manner of achorale prelude. Because of the extreme brevity of the theme and number of repetitions required, and free of the binding ofchord progression to tetrachord in the lament, the breadth of theharmonic excursion in litany is usually notable.
{{cite book}}: CS1 maint: multiple names: authors list (link)