Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Transiting Exoplanet Survey Satellite

From Wikipedia, the free encyclopedia
(Redirected fromTess object of interest)
NASA satellite of the Explorer program
"TESS" redirects here. For other uses, seeTess.
This article needs to beupdated. Please help update this article to reflect recent events or newly available information.(January 2022)

Transiting Exoplanet Survey Satellite
TESS satellite
NamesExplorer 95
TESS
MIDEX-7
Mission typeSpace observatory[1][2]
OperatorNASA / MIT
COSPAR ID2018-038AEdit this at Wikidata
SATCATno.43435
Websitetess.gsfc.nasa.gov
tess.mit.edu
Mission duration2 years (planned)
7 years, 7 months, 5 days(in progress)
Spacecraft properties
SpacecraftExplorer XCV
Spacecraft typeTransiting Exoplanet Survey Satellite
BusLEOStar-2/750[3]
ManufacturerOrbital ATK
Launch mass362 kg (798 lb)[4]
Dimensions3.7 × 1.2 × 1.5 m (12.1 × 3.9 × 4.9 ft)
Power530watts
Start of mission
Launch date18 April 2018, 22:51:30UTC[5]
RocketFalcon 9 Block 4B1045-1
Launch siteCape Canaveral,SLC-40
ContractorSpaceX
Entered service25 July 2018
Orbital parameters
Reference systemGeocentric orbit
RegimeHighly elliptical orbit
Perigee altitude108,000 km (67,000 mi)
Apogee altitude375,000 km (233,000 mi)
Inclination37.00°
Period13.70 days

TESS satellite mission patch
← IRIS (Explorer 94)
ICON (Explorer 96) →

Transiting Exoplanet Survey Satellite (TESS) is aspace telescope forNASA'sExplorer program, designed to search forexoplanets using thetransit method in an area 400 times larger than that covered by theKepler mission.[6] It was launched on 18 April 2018, atop aFalcon 9 launch vehicle and was placed into ahighly elliptical 13.70-day orbit around theEarth.[6][2][7][8][9] Thefirst light image from TESS was taken on 7 August 2018, and released publicly on 17 September 2018.[1][10][11]

In the two-year primary mission, TESS was expected to detect about 1,250 transiting exoplanets orbiting the targetedstars, and an additional 13,000 orbiting stars not targeted but observed.[12] After the end of the primary mission around 4 July 2020, scientists continued to search its data for more planets, while theextended missions acquires additional data. As of 1 July 2025[update], TESS had identified 7,655 candidate exoplanets, of which 638 had been confirmed.[13]

The primary mission objective for TESS was tosurvey thebrightest stars near the Earth for transiting exoplanets over a two-year period. The TESS satellite uses an array of wide-field cameras to perform a survey of 85% of the sky. With TESS, it is possible to study the mass, size, density and orbit of a large cohort of small planets, including a sample ofrocky planets in thehabitable zones of their host stars. TESS provides prime targets for further characterization by theJames Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets and theKepler space telescope has mostly found planets around distant stars that are too faint for characterization, TESS finds many small planets around the nearest stars in the sky. TESS records the nearest and brightestmain sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.[14] Detailed information about such planetary systems withhot Jupiters makes it possible to better understand the architecture of such systems.[15][16]

The program is led by theMassachusetts Institute of Technology (MIT) withseed funding fromGoogle.[17] On 5 April 2013, it was announced that TESS, along with theNeutron Star Interior Composition Explorer (NICER), had been selected by NASA for launch.[18][19] On 18 July 2019, after the first year of operation, the southern portion of the survey was completed, and the northern survey was started. The primary mission ended with the completion of the northern survey on 4 July 2020, which was followed by the first extended mission. The first extended mission concluded in September 2022 and the spacecraft entered its second extended mission[20] which should last for another three years.

History

[edit]

The concept of TESS was first discussed in 2005 by the Massachusetts Institute of Technology (MIT) and theSmithsonian Astrophysical Observatory (SAO).[21] The genesis of TESS was begun during 2006, when a design was developed from private funding by individuals, Google, andThe Kavli Foundation.[22] In 2008, MIT proposed that TESS become a full NASA mission and submitted it for theSmall Explorer program atGoddard Space Flight Center,[22] but it was not selected.[23] It was resubmitted in 2010 as anExplorer program mission, and was approved in April 2013 as a Medium Explorer mission.[24][22][25] TESS passed itscritical design review (CDR) in 2015, allowing production of the satellite to begin.[22] While Kepler had cost US$640 million at launch, TESS cost only US$200 million (plus US$87 million for launch).[26][27] The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. TESS will survey 200,000 of the brightest stars near theSun to search for transiting exoplanets. TESS was launched on 18 April 2018, aboard a SpaceX Falcon 9 launch vehicle.

In July 2019, an Extended Mission 2020 to 2022 was approved.[28] On 3 January 2020, NASA reported that TESS had discovered its firstpotentially habitable Earth-sized planet,TOI-700 d.[29]

Mission overview

[edit]

TESS is designed to carry out the first spaceborneall-skytransiting exoplanet survey.[18][30] It is equipped with four wide-angle telescopes and associatedcharge-coupled device (CCD) detectors. Science data are transmitted to Earth every two weeks. Full-frame images with an effective exposure time of two hours are transmitted as well, enabling scientists to search for unexpected transient phenomena, such as the optical counterparts togamma-ray bursts. TESS also hosts a Guest Investigator program, allowing scientists from other organizations to use TESS for their own research. The resources allocated to Guest programs allow an additional 20,000 celestial bodies to be observed.[31]

TESS - Southern Sky panorama
(video (3:30); 18 July 2019)

Orbital dynamics

[edit]

TESS uses a novel highly elliptical orbit around the Earth with anapogee approximately at the distance of the Moon and aperigee of 108,000 km (67,000 mi). TESS orbits Earth twice during the time the Moon orbits once, a 2:1resonance with the Moon.[32] The orbit is expected to remain stable for a minimum of ten years.

In order to obtain unobstructed imagery of both thenorthern andsouthern hemispheres of the sky, TESS utilizes a 2:1lunarresonant orbit called P/2, an orbit that has never been used before (althoughInterstellar Boundary Explorer (IBEX) uses a similar P/3 orbit). Thehighly elliptical orbit has a 375,000 km (233,000 mi) apogee, timed to be positioned approximately 90° away from the position of the Moon to minimize itsdestabilizing effect. This orbit should remain stable for decades and will keep TESS's cameras in a stable temperature range. The orbit is entirely outside theVan Allen belts to avoid radiation damage to TESS, and most of the orbit is spent far outside the belts. Every 13.70 days at its perigee of 108,000 km (67,000 mi), TESS transmits the data it collected during its most recent orbit back to earth via itsdownlink. This transmission occurs over a period of approximately three hours.[33]

Science objectives

[edit]
TESS –first light
(7 August 2018)[1][10][11]
The 26 observation sectors of the sky planned for TESS

TESS's two-year all-sky survey would focus on nearbyG-,K-, andM-typestars withapparent magnitudes brighter than magnitude 12.[34] Approximately 500,000 stars were to be studied, including the 1,000 closestred dwarfs across the whole sky,[35][36] an area 400 times larger than that covered by theKepler mission. TESS was expected to find more than 3,000 transiting exoplanet candidates, including 500Earth-sized planets andsuper-Earths.[35] Of those discoveries, an estimated 20 were expected to be super-Earths located in thehabitable zone around a star.[37] The stated goal of the mission was to determine the masses of at least 50 Earth-sized planets (at most 4 times Earth radius). Most detected exoplanets are expected to be between 30 and 300 light-years away.

The survey was broken up into 26 observation sectors, each sector being 24° × 96°, with an overlap of sectors at the ecliptic poles to allow additional sensitivity toward smaller and longer-period exoplanets in that region of the celestial sphere. The spacecraft will spend two 13.70-day orbits observing each sector, mapping the southern hemisphere of sky in its first year of operation and the northern hemisphere in its second year.[38] The cameras actually take images every 2 seconds, but all the raw images would represent much more data volume than can be stored or downlinked. To deal with this, cutouts around 15,000 selected stars (per orbit) will becoadded over a 2-minute period and saved on board for downlink, while full-frame images will also be coadded over a 30-minute period and saved for downlink. The actual data downlinks will occur every 13.70 days near perigee.[39] This means that during the 2 years, TESS will continuously survey 85% of the sky for 27 days, with certain parts being surveyed across multiple runs. The survey methodology was designed such that the area that will be surveyed, essentially continuously, over an entire year (351 observation days) and makes up about 5% of the entire sky, will encompass the regions of sky (near the ecliptic poles) which will be observable at any time of year with theJames Webb Space Telescope (JWST).[40]

In October 2019,Breakthrough Listen started a collaboration with scientists from the TESS team to look for signs of advanced extraterrestrial life. Thousands of new planets found by TESS will be scanned for "technosignatures" by Breakthrough Listen partner facilities across the globe. Data from TESS monitoring of stars will also be searched for anomalies.[41]

Asteroseismology

[edit]

The TESS team also plans to use a 30-minute observation cadence for full-frame images, which has been noted for imposing a hardNyquist limit that can be problematic forasteroseismology of stars.[42] Asteroseismology is the science that studies the internal structure of stars by the interpretation of their frequency spectra. Different oscillation modes penetrate to different depths inside the star. TheKepler andPLATO observatories are also intended for asteroseismology.[43]

Extended missions

[edit]

During the 27 month First Extended Mission, July 2020 to Sept 2022, data collection was slightly changed:[44]

  • A new set of target stars will be selected
  • The number of stars monitored at 2-minute cadence was increased from 15,000 to 20,000 per observing sector.
  • Up to 1000 stars per sector will be monitored at a new fast 20-second cadence.
  • The full-frame image cadence will be increased from every 30 minutes to every 10 minutes.
  • The pointings and gaps in coverage will be slightly different during the extended mission.
  • Regions near the ecliptic (omitted in the primary mission) will be covered.

During the 3 year Second Extended Mission,[45] Sept 2022 to Nov 2025, the full-frame image cadence will be further increased from every 10 minutes to every 200 seconds, number of 2-minute cadence targets reduced to ~8000 per sector, and number of 20-second cadence targets increased to ~2000 per sector.[46]

Launch

[edit]
Falcon 9 launch vehicle carrying TESS, launching fromSpace Launch Complex 40 atCape Canaveral in April 2018

In December 2014,SpaceX was awarded the contract to launch TESS in August 2017,[47] for a total contract value of US$87 million.[48] The 362 kg (798 lb) spacecraft was originally scheduled to launch on 20 March 2018, but this was pushed back by SpaceX to allow additional time to prepare the launch vehicle and meet NASA launch service requirements.[49] A static fire of the Falcon 9 rocket was completed on 11 April 2018, at approximately 18:30 UTC.[50] The launch was postponed again from 16 April 2018,[7] and TESS was eventually launched on a SpaceXFalcon 9 launch vehicle from theSLC-40 launch site atCape Canaveral Air Force Station (CCAFS) on 18 April 2018.[8][9]

The Falcon 9 launch sequence included a 149-second burn by the first stage, followed by a 6-minute second stage burn. Meanwhile, the first-stage booster performed controlled-reentry maneuvers and successfully landed on the autonomous drone shipOf Course I Still Love You. An experimental water landing was performed for the fairing,[51] as part of SpaceX's attempt to developfairing reusability.

After coasting for 35 minutes, the second stage performed a final 54-second burn that placed TESS into asupersynchronoustransfer orbit of 200 × 270,000 km (120 × 167,770 mi) at aninclination of 28.50°.[51][52] The second stage released the payload, after which the stage itself was placed in aheliocentric orbit.

Spacecraft

[edit]
TESS spacecraft before launch

In 2013,Orbital Sciences Corporation received a four-year, US$75 million contract to build TESS for NASA.[53] TESS uses an Orbital SciencesLEOStar-2satellite bus, capable of three-axis stabilization using fourhydrazine thrusters plus fourreaction wheels providing better than threearcsecond fine spacecraft pointing control. Power is provided by two single-axissolar arrays generating 400watts. AKa-band dish antenna provides a 100Mbit/s science downlink.[35][54]

Operational orbit

[edit]
Animation of Transiting Exoplanet Survey Satellite's trajectory from 18 April 2018 to 18 December 2019
  Transiting Exoplanet Survey Satellite ·   Earth ·   Moon
Planned orbital maneuvers after release from Falcon 9's second stage. Horizontal axis schematically represents longitude relative to the Moon, vertical axis is altitude. A1M = Apogee 1 manoeuvre, P1M = Perigee 1 manoeuvre, etc., TCM = trajectory correction manoeuvre (optional), PAM = period adjustment manoeuvre.

Once injected into the initial orbit by the Falcon 9second stage, the spacecraft performed four additional independentburns that placed it into a lunar flyby orbit.[55] On 17 May 2018, the spacecraft underwent agravity assist by the Moon at 8,253.5 km (5,128.5 mi) above the surface,[56] and performed the final period adjustment burn on 30 May 2018.[57] It achieved an orbital period of 13.65 days in the desired 2:1 resonance with the Moon, at 90° phase offset to the Moon at apogee, which is expected to be a stable orbit for at least 20 years, thus requiring very little fuel to maintain.[8] The entire maneuvering phase was expected to take a total of two months, and put the craft in an eccentric orbit (17–75 R🜨) at a 37° inclination. The totaldelta-v budget for orbit maneuvers was 215 m/s (710 ft/s), which is 80% of the mission's total available reserves. If TESS receives an on-target or slightly above nominal orbit insertion by the Falcon 9, a theoretical mission duration in excess of 15 years would be possible from a consumables standpoint.[52]

Project timeline

[edit]

Thefirst light image was made on 7 August 2018, and released publicly on 17 September 2018.[1][10][11][58]

TESS completed its commissioning phase at the end of July and the science phase officially started on 25 July 2018.[59]

For the first two years of operation TESS monitored both the southern (year 1) and northern (year 2)celestial hemispheres. During its nominal mission TESS tiles the sky in 26 separate segments, with a 27.4-day observing period per segment.[38] The first southern survey was completed in July 2019. The first northern survey finished in July 2020.

A 27-month First Extended mission ran until September 2022. A second extended mission will run approximately additional three years.

Instruments

[edit]
Instruments on TESS

The sole instrument on TESS is a package of fourwide-field-of-view charge-coupled device (CCD) cameras. Each camera features four low-noise, low-power 4 megapixel CCDs created byMIT Lincoln Laboratory. The four CCDs are arranged in a 2 x 2 detector array for a total of 16megapixels per camera and 16 CCDs for the entire instrument. Each camera has a 24° × 24°field of view, a 100 mm (3.9 in) effectivepupil diameter, a lens assembly with seven optical elements, and abandpass range of 600 nm (orange) to 1000 (NIR) nm.[35][3] The TESS lenses have a combined field of view of 24° × 96° (2300 deg2, around 5% of the entire sky) and afocal ratio of f/1.4. The ensquared energy, the fraction of the total energy of the point-spread function that is within a square of the given dimensions centered on the peak, is 50% within 15 × 15 μm and 90% within 60 × 60 μm.[3] For comparison, Kepler's primary mission only covered an area of the sky measuring 105 deg2, though the K2 extension has covered many such areas for shorter times.

The four telescopes in the assembly each have a 10.5-cm diameter lens entrance aperture, with a f/1.4 focal ratio, with a total of seven lenses in theoptical train.[60]

Ground operations

[edit]

The TESS ground system is divided between eight sites around the United States. These includeSpace Network and theJet Propulsion Laboratory'sNASA Deep Space Network for command and telemetry,Orbital ATK's Mission Operations Center,Massachusetts Institute of Technology's Payload Operations Center, theAmes Research Center's Science Processing Operations Center, TheGoddard Space Flight Center's Flight Dynamics Facility, theSmithsonian Astrophysical Observatory's TESS Science Office, and theMikulski Archive for Space Telescopes (MAST).[61]

Stable light source for tests

[edit]

One of the issues facing the development of this type of instrument is having an ultra-stable light source to test on. In 2015, a group at theUniversity of Geneva made a breakthrough in the development of a stable light source. While this instrument was created to support ESA'sCHEOPS exoplanet observatory, one was also ordered by the TESS program.[62] Although both observatories plan to look at bright nearby stars using the transit method, CHEOPS is focused on collecting more data on known exoplanets, including those found by TESS and other survey missions.[63]

Results

[edit]
Test image taken before the start of science operations. The image is centered on the constellationCentaurus. In the top right corner the edge of theCoalsack Nebula can be seen. The bright star in the bottom left isBeta Centauri.

Current mission results as of 01 July 2025: 638 confirmed exoplanets discovered by TESS, with 7655 candidate-planets that are still awaiting confirmation or rejection as false positive by thescientific community.[64]TESS team partners include the Massachusetts Institute of Technology, the Kavli Institute for Astrophysics and Space Research, NASA's Goddard Space Flight Center, MIT's Lincoln Laboratory, Orbital ATK, NASA's Ames Research Center, the Harvard-Smithsonian Center for Astrophysics, and theSpace Telescope Science Institute.

ExoplanetLHS 3844 b (artist concept)

C/2018 N1

[edit]

TESS started science operations on 25 July 2018.[65] The first announced finding from the mission was the observation ofcometC/2018 N1.[65]

Pi Mensae

[edit]

The first exoplanet detection announcement was on 18 September 2018, announcing the discovery of a super-Earth in thePi Mensae system orbiting the star every 6 days, adding to a knownSuper-Jupiter orbiting the same star every 5.9 years.[66]

LHS 3844 b

[edit]

On 20 September 2018, the discovery of an ultra-short period planet was announced, slightly larger than Earth, orbiting the red dwarfLHS 3844. With an orbital period of 11 hours,LHS 3844 b is one of the planets with the shortest known period. It orbits its star at a distance of 932,000 km (579,000 mi). LHS 3844 b is also one of the closest known exoplanets to Earth, at a distance of 14.9 parsecs.[67]

HD 202772 Ab

[edit]

TESS's third discovered exoplanet isHD 202772 Ab, a hot Jupiter orbiting the brighter component of the visual binary starHD 202772, located in the constellationCapricornus at a distance of about 480 light-years from Earth. The discovery was announced on 5 October 2018. HD 202772 Ab orbits its host star once every 3.3 days. It is an inflated hot Jupiter, and a rare example of hot Jupiters around evolved stars. It is also one of the most strongly irradiated planets known, with an equilibrium temperature of 2,100 K (1,830 °C; 3,320 °F).[68]

HD 21749

[edit]

On 15 April 2019, TESS' first discovery of an earth-sized planet was reported.HD 21749 c is a planet described as "likely rocky", with about 89% of Earth's diameter and orbits theK-type main sequence starHD 21749 in about 8 days. The planet's surface temperature is estimated to be as high as 427 °C. Both known planets in the system,HD 21749 b andHD 21749 c, were discovered by TESS. HD 21749 c represents the 10th confirmed planet discovery by TESS.[69]

MAST Data collaboration

[edit]

Data on exoplanet candidates continue to be made available at MAST.[70] As of 20 April 2019, the total number of candidates on the list was up to 335. Besides candidates identified as previously discovered exoplanets, this list also includes ten newly discovered exoplanets, including the five mentioned above. Forty-four of the candidates from Sector 1 in this list were selected for follow-up observations by the TESS Follow-Up Program (TFOP), which aims to aid the discovery of 50 planets with a planetary radius ofR < 4RE through repeated observations.[71] The list of candidate exoplanets continues to grow as additional results are being published on the same MAST page.

Changing to the Northern Sky

[edit]

On 18 July 2019, after the first year of operation the southern portion of the survey was completed, it turned its cameras to the Northern Sky. As of this time it has discovered 21 planets and has over 850 candidate exoplanets.[72]

DS Tucanae Ab

[edit]

On 23 July 2019, the discovery of the young exoplanetDS Tucanae Ab (HD 222259 Ab) in the ~45 Myr oldTucana-Horologium youngmoving group was published in a paper. TESS first observed the planet in November 2018 and it was confirmed in March 2019. The young planet is larger than Neptune, but smaller than Saturn. The system is bright enough to follow up with radial velocity and transmission spectroscopy.[73][74] ESA'sCHEOPS mission will observe the transits of the young exoplanet DS Tuc Ab. A team of scientists got 23.4 orbits approved in the first Announcement of Opportunity (AO-1) for the CHEOPS Guest Observers (GO) Programme to characterize the planet.[75]

Gliese 357

[edit]

On 31 July 2019, the discovery of exoplanets around the M-type dwarf starGliese 357 at a distance of 31 light years from Earth was announced.[76] TESS directly observed the transit ofGJ 357 b, a hot earth with an equilibrium temperature of around 250 °C. Follow-up ground observations and analyses of historic data lead to the discovery ofGJ 357 c andGJ 357 d. While GJ 357 b and GJ 357 c are too close to the star to be habitable, GJ 357 d resides at the outer edge of the star'shabitable zone and may possess habitable conditions if it has an atmosphere. With at least 6.1ME it is classified as aSuper-Earth.[76]

Count of exoplanets in 2019

[edit]

As of September 2019, over 1000TESS Objects of Interest (ToI) have been listed in the public database,[77] at least 29 of which are confirmed planets, about 20 of which within the stated goal of the mission of Earth-sized (<4 Earth radii).[78]

ASASSN-19bt

[edit]

On 26 September 2019, it was announced that TESS observed its firsttidal disruption event (TDE), calledASASSN-19bt. The TESS data revealed that ASASSN-19bt began to brighten on 21 January 2019, ~8.3 days before the discovery byASAS-SN.[79][80]

TOI-700

[edit]
TOI-700 system
TOI-700 multiplanetary system
ExoplanetTOI-700 d (artist concept)

On 6 January 2020, NASA reported the discovery ofTOI-700 d, the firstEarth-sizedexoplanet in thehabitable zone discovered by the TESS. The exoplanet orbits the starTOI-700 100 light-years away in theDoradoconstellation.[29] The TOI-700 system contains two other planets: TOI-700 b, another Earth-sized planet, and TOI-700 c, a super-Earth. This system is unique in that the larger planet is found between the two smaller planets. It is currently unknown how this arrangement of planets came to be, whether these planets formed in this order or if the larger planetmigrated to its current orbit.[81] On the same day, NASA announced that astronomers used TESS data to show thatAlpha Draconis is aneclipsing binary star.[82]

TOI-1338

[edit]

NASA also announced the discovery ofTOI-1338 b, the firstcircumbinary planet discovered by TESS. TOI-1338 b is around 6.9 times larger than Earth, or between the sizes ofNeptune andSaturn. It lies in a system 1,300 light-years away in the constellationPictor. The stars in the system make an eclipsing binary, which occurs when the stellar companions circle each other in our plane of view. One is about 10% more massive than the Sun, while the other is cooler, dimmer and only one-third the Sun's mass. TOI-1338 b's transits are irregular, between every 93 and 95 days, and vary in depth and duration thanks to the orbital motion of its stars. TESS only sees the transits crossing the larger star — the transits of the smaller star are too faint to detect. Although the planet transits irregularly, its orbit is stable for at least the next 10 million years. The orbit's angle to us, however, changes enough that the planet transit will cease after November 2023 and resume eight years later.[83]

HD 108236

[edit]

On 25 January 2021, a team led by astrochemistTansu Daylan, with the help of two high school interns as part of the Science Research Mentoring Program at Harvard & MIT, discovered and validated four extrasolar planets — composed of one super-Earth and threesub-Neptunes - hosted by the bright, nearby, Sun-like starHD 108236. The two high schoolers, 18 year old Jasmine Wright ofBedford High School inBedford, Massachusetts, and 16 year old Kartik Pinglé of Cambridge Ringe And Latin School, ofCambridge, Massachusetts, are reported to be the youngest individuals in history to discover a planet, let alone four.[84][85]

TIC 168789840

[edit]

On 27 January 2021, several news agencies reported that a team using TESS had determined thatTIC 168789840, a stellar system with six stars in three binary pairs was oriented so astronomers could observe the eclipses of all the stars.[86][87][88][89][90] It is the first six star system of its kind.

Count of exoplanets in 2021

[edit]

In March 2021, NASA announced that TESS found 2200 exoplanet candidates.[91] By the end of 2021, TESS had discovered over 5000 candidates.[92]

TOI-1231 b

[edit]

On 17 May 2021, an international team of scientists, including researchers from NASA's Jet Propulsion Laboratory and theUniversity of New Mexico, reported, and confirmed by a ground based telescope, the space telescope's first discovery of a Neptune-sized exoplanet, TOI-1231 b, inside a habitable zone. The planet orbits a nearby red dwarf star, 90 light-years away in theVela constellation.[93]

Exoplanet search programs

[edit]

The TESS Objects of Interest (TOI) are assigned by the TESS team[94] and the Community TOIs (CTOI) are assigned by independent researchers.[95] The primary mission of TESS produced 2241 TOIs.[94] Other small and large collaborations of researchers try to confirm the TOIs and CTOIs, or try to find new CTOIs.

Some of the collaborations with names that are searching exclusively for TESS planets are:

Collaborations with currently a smaller amount of discovery papers:

The TESS community is also producingsoftware and programs to help validate the planet candidates, such as TRICERATOPS,[102] DAVE,[103] Lightkurve,[104] Eleanor[105] andPlanet Patrol.[106]

Stellar rotations

[edit]

TESS can estimatestellar rotation rates (which correlate with age), to find populations of similar age stars that likely formed together.[107]

In popular culture

[edit]

TESS is featured accurately in the 2018 filmClara.

See also

[edit]

References

[edit]
  1. ^abcdOverbye, Dennis (20 September 2018)."NASA's TESS Starts Collecting Planets - The satellite, launched in April, has already identified at least 73 stars that may harbor exoplanets, most of them new to astronomers". NASA. Retrieved23 September 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  2. ^abOverbye, Dennis (26 March 2018)."Meet Tess, Seeker of Alien Worlds".The New York Times. Retrieved26 March 2018.
  3. ^abcRicker, George R.; Winn, Joshua N.; Vanderspek, Roland; et al. (January–March 2015)."Transiting Exoplanet Survey Satellite"(PDF).Journal of Astronomical Telescopes, Instruments, and Systems.1 (1) 014003.arXiv:1406.0151.Bibcode:2015JATIS...1a4003R.doi:10.1117/1.JATIS.1.1.014003.S2CID 1342382. Archived fromthe original(PDF) on 11 January 2020. Retrieved28 February 2018.
  4. ^"TESS: Discovering Exoplanets Orbiting Nearby Stars - Fact Sheet"(PDF). Orbital ATK. 2018. Archived fromthe original(PDF) on 17 February 2018. Retrieved21 May 2018.
  5. ^Gebhardt, Chris (18 April 2018)."SpaceX successfully launches TESS on a mission to search for near-Earth exoplanets". NASASpaceFlight.com. Retrieved20 May 2018.
  6. ^abRicker, George R.; Winn, Joshua N.; Vanderspek, Roland; Latham, David W.; Bakos, Gáspár Á.; Bean, Jacob L.; Berta-Thompson, Zachory K.; Brown, Timothy M.; Buchhave, Lars; Butler, Nathaniel R.; Butler, R. Paul; Chaplin, William J.; Charbonneau, David; Christensen-Dalsgaard, Jørgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, Edward W.; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J.; Howard, Andrew W.; Ida, Shigeru; Jenkins, Jon M.; et al. (24 October 2014)."Transiting Exoplanet Survey Satellite".Journal of Astronomical Telescopes, Instruments, and Systems.1 014003. SPIE Digital Library.arXiv:1406.0151.Bibcode:2015JATIS...1a4003R.doi:10.1117/1.JATIS.1.1.014003.
  7. ^ab"Launch Schedule". Spaceflight Now. 27 February 2018. Retrieved28 February 2018.
  8. ^abcAmos, Jonathan (19 April 2018)."Planet-hunter launches from Florida".BBC News.
  9. ^ab"NASA Planet Hunter on Its Way to Orbit". NASA. 19 April 2018. Retrieved19 April 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  10. ^abcKazmierczak, Jeanette; Garner, Rob (17 September 2018)."NASA's TESS Shares First Science Image in Hunt to Find New Worlds". NASA. Retrieved23 September 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  11. ^abc"NASA's TESS Releases First Science Image". NASA. 17 September 2018. Retrieved23 September 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  12. ^Barclay, Thomas; Pepper, Joshua; Quintana, Elisa V. (25 October 2018)."A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)".The Astrophysical Journal. Supplement Series.239 (1): 2.arXiv:1804.05050.Bibcode:2018ApJS..239....2B.doi:10.3847/1538-4365/aae3e9.ISSN 1538-4365.
  13. ^"Transiting Exoplanets Survey Satellite (TESS)".Exoplanet Exploration: Planets Beyond our Solar System. NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  14. ^"NASA FY 2015 President's Budget Request Summary"(PDF). NASA. 10 March 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  15. ^Wenz, John (10 October 2019)."Lessons from scorching hot weirdo-planets".Knowable Magazine. Annual Reviews.doi:10.1146/knowable-101019-2. Retrieved4 April 2022.
  16. ^Dawson, Rebekah I.; Johnson, John Asher (14 September 2018). "Origins of Hot Jupiters".Annual Review of Astronomy and Astrophysics.56 (1):175–221.arXiv:1801.06117.Bibcode:2018ARA&A..56..175D.doi:10.1146/annurev-astro-081817-051853.S2CID 119332976.
  17. ^Chandler, David (19 March 2008)."MIT aims to search for Earth-like planets with Google's help". MIT.
  18. ^abHarrington, J. D. (5 April 2013)."NASA Selects Explorer Investigations for Formulation" (Press release). NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  19. ^"NASA selects MIT-led TESS project for 2017 mission". MIT. 5 April 2013. Retrieved6 April 2013.
  20. ^Barclay, Thomas."NASA - TESS Science Support Center".TESS. Retrieved4 November 2022.[permanent dead link]
  21. ^Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; Latham, David W.; Bakos, Gaspar A.; Bean, Jacob L.; Berta-Thompson, Zachory K.; Brown, Timothy M.; Buchhave, Lars; Butler, Nathaniel R.; Butler, R. Paul (24 October 2014). "The Transiting Exoplanet Survey Satellite".Journal of Astronomical Telescopes, Instruments, and Systems.1 (1) 014003.arXiv:1406.0151.Bibcode:2015JATIS...1a4003R.doi:10.1117/1.JATIS.1.1.014003.ISSN 2329-4124.S2CID 1342382.
  22. ^abcd"Mission History".Transiting Exoplanet Survey Satellite. NASA. Archived fromthe original on 29 July 2014. Retrieved23 October 2015.Public Domain This article incorporates text from this source, which is in thepublic domain.
  23. ^Hand, Eric (22 June 2009)."No SMEX-love for TESS". Nature (journal). Archived fromthe original on 2 October 2018. Retrieved23 October 2015.
  24. ^George R. Ricker; Joshua N. Winn; Roland Vanderspek; David W. Latham; Gáspár Á. Bakos; Jacob L. Bean; et al. (2014). "Transiting Exoplanet Survey Satellite (TESS)". In Jacobus M. Oschmann Jr; Mark Clampin; Giovanni G. Fazio; Howard A. MacEwen (eds.).Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Vol. 9143. SPIE. p. 914320.doi:10.1117/12.2063489.hdl:1721.1/97916.ISBN 978-0-8194-9611-9.
  25. ^"Medium-Class Explorers (MIDEX) Missions in Development". NASA. Retrieved23 October 2015.Public Domain This article incorporates text from this source, which is in thepublic domain.
  26. ^"Meet TESS, NASA's Next Planet Finder". Popular Mechanics. 30 October 2013. Retrieved4 May 2018.
  27. ^Clark, Stuart (19 April 2018)."Spacewatch: Tess embarks on planet-hunting mission for NASA".the Guardian. Retrieved4 May 2018.
  28. ^Mireles, Ismael (18 July 2019)."NASA Extends the TESS Mission through 2022".
  29. ^abAndreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020)."NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Retrieved6 January 2020.Public Domain This article incorporates text from this source, which is in thepublic domain.
  30. ^Ricker, George R. (26 June 2014).Discovering New Earths and Super-Earths in the Solar Neighborhood. SPIE Astronomical Telescopes + Instrumentation 22–27 June 2014 Montréal, Québec, Canada.doi:10.1117/2.3201407.18.
  31. ^"About TESS". NASA. 15 July 2016. Retrieved25 March 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  32. ^McGiffin, Daniel A.; Mathews, Michael; Cooley, Steven (1 June 2001)."HIGH EARTH ORBIT DESIGN FOR LUNAR-ASSISTED MEDIUM CLASS EXPLORER MISSIONS".2001 Flight Mechanics Symposium. NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  33. ^"New Explorer Mission Chooses the 'Just-Right' Orbit". NASA. 31 July 2013.
  34. ^Seager, Sara (2011)."Exoplanet Space Missions". Massachusetts Institute of Technology. Archived fromthe original on 25 November 2019. Retrieved7 April 2013.
  35. ^abcd"TESS: Transiting Exoplanet Survey Satellite"(PDF). NASA. October 2014. FS-2014-1-120-GSFC. Archived fromthe original(PDF) on 17 December 2014. Retrieved17 December 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  36. ^Zastrow, Mark (30 May 2013)."Exoplanets After Kepler: What's next?". Sky & Telescope. Retrieved17 December 2014.
  37. ^Hadhazy, Adam (23 July 2015)."Super-Earths Might Be Our Best Bet For Finding Alien Life". Discover (magazine). Retrieved23 October 2015.
  38. ^ab"Home - TESS - Transiting Exoplanet Survey Satellite".tess.mit.edu. Retrieved4 April 2018.
  39. ^"TESS Observatory Guide"(PDF). NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  40. ^Crossfield, Ian (27 March 2017).Latest Exoplanet Results from NASA's Kepler/K2 Mission. SETI Talks 2017. SETI Institute. 42.3 minutes in.
  41. ^"Breakthrough Initiatives".breakthroughinitiatives.org. Retrieved12 November 2019.
  42. ^Murphy, Simon J. (November 2015)."The potential for super-Nyquist asteroseismology withTESS"(PDF).Monthly Notices of the Royal Astronomical Society.453 (3):2569–2575.arXiv:1508.02717.Bibcode:2015MNRAS.453.2569M.doi:10.1093/mnras/stv1842.S2CID 54578476. Archived fromthe original(PDF) on 23 April 2018. Retrieved23 April 2018.
  43. ^"Asteroseismic data analysis with Kepler, K2, TESS and PLATO". FindaPhD.com. Retrieved31 October 2015.
  44. ^"NASA's TESS Completes Primary Mission". NASA. 10 August 2020.Public Domain This article incorporates text from this source, which is in thepublic domain.
  45. ^Barclay, Thomas."NASA - TESS Science Support Center".TESS. Retrieved4 November 2022.[permanent dead link]
  46. ^Barclay, Thomas."NASA - TESS Science Support Center".TESS. Retrieved27 August 2023.
  47. ^Berger, Brian (17 December 2014)."NASA Taps SpaceX To Launch TESS Satellite". SpaceNews. Retrieved31 October 2015.
  48. ^"NASA Awards Launch Services Contract for Transiting Exoplanet Survey Satellite" (Press release). NASA. 16 December 2014. Retrieved17 December 2014.
  49. ^Clark, Stephen (16 February 2018)."Exoplanet-hunting satellite arrives in Florida for April launch". Spaceflight Now. Retrieved28 February 2018.
  50. ^@NASA_TESS (11 April 2018)."The @SpaceX #Falcon9 fairing for @NASA_TESS arrived over the weekend..." (Tweet) – viaTwitter.
  51. ^ab"Launch Profile - Falcon 9 - TESS". Spaceflight101.com. Retrieved22 April 2018.
  52. ^ab"TESS Orbit Design". Spaceflight101.com. Retrieved22 April 2018.
  53. ^Leone, Dan (24 April 2013)."Orbital Gets $75M To Build TESS Exoplanet Telescope". SpaceNews. Retrieved17 May 2016.
  54. ^"TESS: Discovering Exoplanets Orbiting Nearby Stars"(PDF). Orbital Sciences. 2014. FS011_13_2998. Retrieved17 December 2014.
  55. ^@NASA_TESS (29 April 2018)."Mission Update: Team decided that the second apogee maneuver (Apogee 2 maneuver (A2M)), was not necessary..." (Tweet) – viaTwitter.
  56. ^@NASA_TESS (18 May 2018)."Mission Update: #TESS successfully completed a lunar flyby..." (Tweet) – viaTwitter.
  57. ^@NASA_TESS (1 June 2018).".@NASA_TESS Mission Update: The..." (Tweet) – viaTwitter.
  58. ^@NASA_TESS (18 May 2018)."As part of camera commissioning, the #TESS science team snapped a two-second test exposure..." (Tweet) – viaTwitter.Public Domain This article incorporates text from this source, which is in thepublic domain.
  59. ^"NASA's TESS spacecraft starts science operations".nasa.gov. 27 July 2018. Retrieved31 July 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  60. ^NASA Goddard Spaceflight Center,Characteristics of the TESS space telescope, retrieved 13 October 2023.[dead link]
  61. ^"TESS Ground Operations". NASA. Archived fromthe original on 29 July 2014. Retrieved27 January 2018.Public Domain This article incorporates text from this source, which is in thepublic domain.
  62. ^Peach, Matthew (1 October 2015)."Swiss group develops 'most stable light source' for satellite tests". Optics.org. Retrieved23 October 2015.
  63. ^Nowakowski, Tomasz (17 March 2015)."ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting". Astro Watch. Archived fromthe original on 1 April 2018. Retrieved29 October 2015.
  64. ^"NASA Exoplanet Archive".exoplanetarchive.ipac.caltech.edu. Retrieved16 October 2022.
  65. ^abGarner, Rob (6 August 2018)."Planet-Hunting TESS Catches a Comet Before Starting Science".NASA.
  66. ^Huang, Chelsea X.; et al. (2018)."TESS Discovery of a Transiting Super-Earth in the Π Mensae System".The Astrophysical Journal.868 (2): L39.arXiv:1809.05967.Bibcode:2018ApJ...868L..39H.doi:10.3847/2041-8213/aaef91.PMC 6662726.PMID 31360431.
  67. ^Vanderspek, Roland; et al. (19 September 2018)."TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844".The Astrophysical Journal.871 (2): L24.arXiv:1809.07242.Bibcode:2019ApJ...871L..24V.doi:10.3847/2041-8213/aafb7a.S2CID 119009146.
  68. ^Wang, Songhu; et al. (5 October 2018)."HD 202772 Ab: A Transiting Hot Jupiter Around A Bright, Mildly Evolved Star In A Visual Binary Discovered By Tess".The Astronomical Journal.157 (2): 51.arXiv:1810.02341.doi:10.3847/1538-3881/aaf1b7.S2CID 59499230.
  69. ^Garner, Rob (15 April 2019)."NASA's TESS Discovers its First Earth-size Planet". NASA. Retrieved20 April 2019.Public Domain This article incorporates text from this source, which is in thepublic domain.
  70. ^"TESS-DATA-ALERTS: Data Products From TESS Data Alerts".archive.stsci.edu. Retrieved20 April 2019.
  71. ^"Followup".TESS - Transiting Exoplanet Survey Satellite. Retrieved20 April 2019.
  72. ^NASA.gov NASA's TESS Mission Completes First Year of Survey, Turns to Northern SkyPublic Domain This article incorporates text from this source, which is in thepublic domain.
  73. ^Albright, Charlotte (14 August 2019)."Dartmouth Astronomer on Leading Discovery of a New Planet".news.dartmouth.edu. Retrieved16 November 2019.
  74. ^Newton, Elisabeth R.; Mann, Andrew W.; Tofflemire, Benjamin M.; Pearce, Logan; Rizzuto, Aaron C.; Vanderburg, Andrew; Martinez, Raquel A.; Wang, Jason J.; Ruffio, Jean-Baptiste; Kraus, Adam L.; Johnson, Marshall C. (23 July 2019)."TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana–Horologium Association".The Astrophysical Journal.880 (1): L17.arXiv:1906.10703.Bibcode:2019ApJ...880L..17N.doi:10.3847/2041-8213/ab2988.ISSN 2041-8213.S2CID 195658207.
  75. ^"AO-1 Programmes - CHEOPS Guest Observers Programme - Cosmos".cosmos.esa.int. Retrieved16 November 2019.
  76. ^abGarner, Rob (30 July 2019)."NASA's TESS Helps Find Intriguing New World". NASA. Retrieved31 July 2019.Public Domain This article incorporates text from this source, which is in thepublic domain.
  77. ^"ExoFOP".exofop.ipac.caltech.edu.
  78. ^"Publications".
  79. ^Garner, Rob (25 September 2019)."TESS Spots Its 1st Star-shredding Black Hole". NASA. Retrieved16 November 2019.Public Domain This article incorporates text from this source, which is in thepublic domain.
  80. ^Holoien, Thomas W.-S.; Vallely, Patrick J.; Auchettl, Katie; Stanek, K. Z.; Kochanek, Christopher S.; French, K. Decker; Prieto, Jose L.; Shappee, Benjamin J.; Brown, Jonathan S.; Fausnaugh, Michael M.; Dong, Subo (26 September 2019)."Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS".The Astrophysical Journal.883 (2): 111.arXiv:1904.09293.Bibcode:2019ApJ...883..111H.doi:10.3847/1538-4357/ab3c66.ISSN 1538-4357.S2CID 128307681.
  81. ^"The TESS Mission's First Earth-Like Planet Found in an Interesting Trio".aasnova.org. 18 February 2020. Retrieved28 February 2020.
  82. ^Reddy, Francis (6 January 2020)."TESS Shows Ancient North Star Undergoes Eclipses". NASA. Retrieved9 January 2020.Public Domain This article incorporates text from this source, which is in thepublic domain.
  83. ^"TESS Discovers Its 1st Planet Orbiting 2 Stars". NASA. 6 January 2020. Retrieved9 January 2020.Public Domain This article incorporates text from this source, which is in thepublic domain.
  84. ^Daylan, Tansu (25 January 2021)."TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236".The Astronomical Journal.161 (2): 85.arXiv:2004.11314.Bibcode:2021AJ....161...85D.doi:10.3847/1538-3881/abd73e.hdl:1721.1/134442.2.S2CID 216080635.
  85. ^"High schoolers discover four exoplanets through Harvard & Smithsonian mentorship program".The Harvard Gazette. 28 January 2021. Retrieved30 May 2021.
  86. ^"Discovery Alert: First Six-star System Where All Six Stars Undergo Eclipses". NASA Goddard Space Flight Center. 27 January 2021.Archived from the original on 27 January 2021. Retrieved29 January 2021.The system, also called TIC 168789840, is the first known sextuple composed of three sets of eclipsing binaries, stellar pairs whose orbits tip into our line of sight so we observe the stars alternatively passing in front of each other.Public Domain This article incorporates text from this source, which is in thepublic domain.
  87. ^Natali Anderson (25 January 2021)."TESS Discovers Sextuply-Eclipsing Six-Star System". Sci-News.Archived from the original on 26 January 2021. Retrieved29 January 2021.'Prior to the discovery of TIC 168789840, there were 17 known sextuple star systems according to the June 2020 update of the Multiple Star Catalog,' lead author Dr. Brian Powell of NASA's Goddard Space Flight Center and colleagues wrote in their paper.
  88. ^Jamie Carter (28 January 2021)."A Weird 'Sextuple' Star System Has Been Found By NASA Where Six Suns Eclipse Each Other".Forbes magazine.Archived from the original on 29 January 2021. Retrieved29 January 2021.
  89. ^"Astronomers find a system of six stars made of three eclipsing binaries". WION (TV channel). 28 January 2021.Archived from the original on 28 January 2021. Retrieved29 January 2021.The primary stars in all three binaries are all slightly bigger and more massive than the Sun and about as hot. The system, also called TIC 168789840, is located about 1,900 light-years away in the constellation Eridanus.
  90. ^Robin George Andrews (23 January 2021)."Six Stars, Six Eclipses: 'The Fact That It Exists Blows My Mind'".The New York Times.Archived from the original on 28 January 2021. Retrieved29 January 2021.But only one of the pairs could have any planets. Two of the system's binaries orbit extremely close to one another, forming their own quadruple subsystem. Any planets there would likely be ejected or engulfed by one of the four stars. The third binary is farther out, orbiting the other two once every 2,000 years or so, making it a possible exoplanetary haven.
  91. ^"Space Telescope Delivers the Goods: 2,200 Possible Planets". NASA. 23 March 2021. Retrieved24 March 2021.Public Domain This article incorporates text from this source, which is in thepublic domain.
  92. ^"TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates". 21 December 2021.
  93. ^Burt, Jennifer A.; Dragomir, Diana; Mollière, Paul; Youngblood, Allison; et al. (17 May 2021)."TOI-1231b: A Temperate, Neptune-sized Planet Transiting the Nearby M3 Dwarf NLTT 24399".The Astronomical Journal.162 (3): 87.arXiv:2105.08077.Bibcode:2021AJ....162...87B.doi:10.3847/1538-3881/ac0432.S2CID 234763319.
  94. ^abGuerrero, Natalia M.; Seager, S.; Huang, Chelsea X.; Vanderburg, Andrew; Garcia Soto, Aylin; Mireles, Ismael; Hesse, Katharine; Fong, William; Glidden, Ana; Shporer, Avi; Latham, David W.; Collins, Karen A.; Quinn, Samuel N.; Burt, Jennifer; Dragomir, Diana (1 June 2021)."The TESS Objects of Interest Catalog from the TESS Prime Mission".The Astrophysical Journal Supplement Series.254 (2): 39.arXiv:2103.12538.Bibcode:2021ApJS..254...39G.doi:10.3847/1538-4365/abefe1.ISSN 0067-0049.
  95. ^"ExoFOP Help page".exofop.ipac.caltech.edu. Retrieved8 September 2022.
  96. ^"NASA/ADS, search Planet Hunters TESS".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  97. ^"NASA/ADS, search for THYME".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  98. ^"NASA/ADS, searching The TESS-Keck Survey or TKS".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  99. ^"NASA/ADS searching TESS Giants Transiting Giants".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  100. ^"NASA/ADS, search for WINE".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  101. ^"NASA/ADS, searching TESS Grand Unified Hot Jupiter Survey".ui.adsabs.harvard.edu. Retrieved8 September 2022.
  102. ^Giacalone, Steven; Dressing, Courtney D.; Jensen, Eric L. N.; Collins, Karen A.; Ricker, George R.; Vanderspek, Roland; Seager, S.; Winn, Joshua N.; Jenkins, Jon M.; Barclay, Thomas; Barkaoui, Khalid; Cadieux, Charles; Charbonneau, David; Collins, Kevin I.; Conti, Dennis M. (1 January 2021)."Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates".The Astronomical Journal.161 (1): 24.arXiv:2002.00691.Bibcode:2021AJ....161...24G.doi:10.3847/1538-3881/abc6af.ISSN 0004-6256.
  103. ^Kostov, Veselin B.; Mullally, Susan E.; Quintana, Elisa V.; Coughlin, Jeffrey L.; Mullally, Fergal; Barclay, Thomas; Colón, Knicole D.; Schlieder, Joshua E.; Barentsen, Geert; Burke, Christopher J. (1 March 2019)."Discovery and Vetting of Exoplanets. I. Benchmarking K2 Vetting Tools".The Astronomical Journal.157 (3): 124.arXiv:1901.07459.Bibcode:2019AJ....157..124K.doi:10.3847/1538-3881/ab0110.ISSN 0004-6256.
  104. ^Lightkurve Collaboration; Cardoso, José Vinícius de Miranda; Hedges, Christina; Gully-Santiago, Michael; Saunders, Nicholas; Cody, Ann Marie; Barclay, Thomas; Hall, Oliver; Sagear, Sheila; Turtelboom, Emma; Zhang, Johnny; Tzanidakis, Andy; Mighell, Ken; Coughlin, Jeff; Bell, Keaton (1 December 2018)."Lightkurve: Kepler and TESS time series analysis in Python".Astrophysics Source Code Library: ascl:1812.013.Bibcode:2018ascl.soft12013L.
  105. ^Feinstein, Adina D.; Montet, Benjamin T.; Foreman-Mackey, Daniel; Bedell, Megan E.; Saunders, Nicholas; Bean, Jacob L.; Christiansen, Jessie L.; Hedges, Christina; Luger, Rodrigo;Scolnic, Daniel; Cardoso, José Vinícius de Miranda (1 September 2019)."eleanor: An Open-source Tool for Extracting Light Curves from the TESS Full-frame Images".Publications of the Astronomical Society of the Pacific.131 (1003): 094502.arXiv:1903.09152.Bibcode:2019PASP..131i4502F.doi:10.1088/1538-3873/ab291c.ISSN 0004-6280.
  106. ^Kostov, Veselin B.; Kuchner, Marc J.; Cacciapuoti, Luca; Acharya, Sovan; Ahlers, John P.; Andrés-Carcasona, Marc; Brande, Jonathan; de Lima, Lucas T.; Di Fraia, Marco Z.; Fornear, Aline U.; Gallo, Francesco; Hyogo, Michiharu; Ienco, Riccardo M.; de Lambilly, Julien S.; Luca, Hugo A. D. (1 April 2022)."Planet Patrol: Vetting Transiting Exoplanet Candidates with Citizen Science".Publications of the Astronomical Society of the Pacific.134 (1034): 044401.Bibcode:2022PASP..134d4401K.doi:10.1088/1538-3873/ac5de0.ISSN 0004-6280.S2CID 248260172.
  107. ^NASA’s TESS Spacecraft Triples Size of Pleiades Star Cluster. 2025

Further reading

[edit]
Library resources about
Transiting Exoplanet Survey Satellite

External links

[edit]
Wikimedia Commons has media related toTransiting Exoplanet Survey Satellite.
Policy and history
History
(creation)
General
Human spaceflight
programs
Past
Current
Robotic programs
Past
Current
Individual featured
missions
(human and robotic)
Past
Currently
operating
Future
Communications
and navigation
NASA lists
NASA images
and artwork
Related
Ground-based


Space missions
Past
Current
Planned
Proposed
Cancelled
Related
Missions
1958–1992
Medium class
(since 1992)
Small class
(since 1992)
University-class/
Missions of opportunity/
International missions
Proposals
  • Green titles indicates active current missions
  • Grey titles indicates cancelled missions
  • Italics indicate missions yet to launch
  • Symbol indicates failure en route or before intended mission data returned
Operating
Radio and
Microwave
Infrared
Optical
Ultraviolet
X-ray and
Gamma-ray
Other
(particle or
unclassified)
Planned
Proposed
Retired
Hibernating
(Mission completed)
Lost/Failed
Cancelled
Related
SpaceX missions and payloads
Launch vehicles
Falcon 1 missions
Falcon 9 missions
Demonstrations
ISS logistics
Crewed
Commercial
satellites
Scientific
satellites
Military
satellites
  • NROL-76
  • X-37B OTV-5
  • Zuma
  • SES-16 / GovSat-1
  • Paz
  • GPS III-01
  • ANASIS-II
  • GPS III-03
  • NROL-108
  • GPS III-04
  • GPS III-05
  • COSMO-SkyMed CSG-2
  • NROL-87
  • NROL-85 (Intruder 13A/B)
  • SARah 1
  • EROS-C3
  • GPS III-06
  • Transport and Tracking Layer (Tranche 0, Flight 1)
  • Transport and Tracking Layer (Tranche 0, Flight 2)
  • 425 Project flight 1 (EO/IR)
  • SARah 2/3
  • USSF-124
  • 425 Project flight 2 (SAR #1)
  • Weather System Follow-on Microwave 1
  • NROL-146
  • NROL-186
  • NROL-113
  • NROL-167
  • NROL-126
  • GPS III-07
  • NROL-149
  • 425 Project flight 3 (SAR #2)
  • NROL-153
  • Spainsat NG I
  • NROL-57
  • NROL-69
  • NROL-192
  • NROL-145
  • 425 Project flight 4 (SAR #3)
  • GPS III-08
  • SDA Tranche 1 DES
  • Dror-1
  • USSF-36 (X-37BOTV-8)
  • National Advanced Optical System (NAOS)
  • SDA Tranche 1 Transport layer T1TL-B
  • NROL-48
  • SDA Tranche 1 Transport layer T1TL-C
  • Spainsat NG II
  • 425 Project flight 5 (SAR #4)
  • CSG-3
  • SDA Tranche 1 Transport layer T1TL-D
  • SDA Tranche 1 Transport layer T1TL-E
  • SDA Tranche 1 Tracking layer T1TR-C
  • USSF-31
  • Skynet 6A
  • SDA Tranche 1 Transport layer T1TL-F
  • SDA Tranche 1 Tracking layer T1TR-A
  • SDA Tranche 1 Tracking layer T1TR-E
  • SDA Tranche 2 Transport layer T2TL-A
  • SDA Tranche 2 Transport layer T2TL-C
  • SDA Tranche 2 Transport layer T2TL-D
  • SDA Tranche 2 Transport layer T2TL-E
  • USSF-75
  • USSF-70
  • SDA Tranche 2 Transport layer T2TL-F
  • SDA Tranche 2 Transport layer T2TL-G
  • SDA Tranche 2 Transport layer T2TL-H
Starlink
Rideshares
Transporter
Bandwagon
Falcon Heavy missions
Starship missions
Flight tests
Crewed
Commercial
satellites
  • Ongoing spaceflights are underlined
  • Future missions andvehicles under development in italics
  • Failed missions† are marked withdagger
Exploration
programs
Active
missions
Orbiters
Landers
Rovers
Past
missions
Crewed landings
Orbiters
Impactors
Landers
Rovers
Sample return
Failed landings
Flybys
Planned
missions
Artemis
CLPS
Luna-Glob
CLEP
Chandrayaan
KLEP
Others
Proposed
missions
Robotic
Crewed
Cancelled /
concepts
Related
  • Missions are ordered by launch date. Crewed missions are initalics.
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
2018 in space
Space probe
launches
Space probes launched in 2018


Impact events
SelectedNEOs
ExoplanetsExoplanets discovered in 2018
Discoveries
Novae
CometsComets in 2018
Space exploration
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Transiting_Exoplanet_Survey_Satellite&oldid=1323577704"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp