Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of tellurium

From Wikipedia, the free encyclopedia
(Redirected fromTellurium-125)

Isotopes oftellurium (52Te)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
120Te0.09%stable
121Tesynth19.31 dε121Sb
122Te2.55%stable
123Te0.89%stable[2]
124Te4.74%stable
125Te7.07%stable
126Te18.8%stable
127Tesynth9.35 hβ127I
128Te31.7%2.2×1024 yββ128Xe
129Tesynth69.6 minβ129I
130Te34.1%7.91×1020 yββ130Xe
Standard atomic weightAr°(Te)

There are 39 knownisotopes and 17nuclear isomers oftellurium (52Te), withatomic masses that range from 104 to 142. These are listed in the table below.

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to beradioactive:128Te and130Te undergodouble beta decay withhalf-lives of, respectively, 2.2×1024 (2.2septillion) years (the longest half-life of allnuclides proven to be radioactive)[5] and 8.2×1020 (820quintillion) years. The longest-lived artificial radioisotope of tellurium is121Te with a half-life of about 19 days. Severalnuclear isomers have longer half-lives, the longest being121mTe with a half-life of 154 days.

The very-long-lived radioisotopes128Te and130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, onlyindium andrhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed thatelectron capture of123Te was observed, but more recent measurements of the same team have disproved this.[6] The half-life of123Te is longer than 9.2 × 1016 years, and probably much longer.[6]

124Te can be used as a starting material in the production ofradionuclides by acyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 areiodine-123 andiodine-124.

The short-lived isotope135Te (half-life 19 seconds) is produced as afission product in nuclear reactors. It decays, via twobeta decays, to135Xe, the most powerful knownneutron absorber, and the cause of theiodine pit phenomenon.

With the exception ofberyllium, tellurium is the second lightest element observed to have isotopes capable of undergoingalpha decay, with isotopes104Te to109Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of8Be, have isotopes with delayed alpha emission (followingproton orbeta emission) as a rare branch.

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[7]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity[1]
[n 8][n 5]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
104Te5252103.94672(34)<4 nsα100Sn0+
105Te5253104.94330(32)633(66) nsα101Sn(7/2+)
106Te5254105.93750(11)78(11) μsα102Sn0+
107Te5255106.93488(11)#3.22(9) msα (70%)103Sn5/2+#
β+ (30%)107Sb
108Te5256107.9293805(58)2.1(1) sα (49%)104Sn0+
β+ (48.6%)108Sb
β+,p (2.4%)107Sn
β+, α (<0.065%)104In
109Te5257108.9273045(47)4.4(2) sβ+ (86.7%)109Sb(5/2+)
β+, p (9.4%)108Sn
α (3.9%)105Sn
β+, α (<0.0049%)105In
110Te5258109.9224581(71)18.6(8) sβ+110Sb0+
111Te5259110.9210006(69)26.2(6) sβ+111Sb(5/2)+
β+, p (?%)110Sn
112Te5260111.9167278(90)2.0(2) minβ+112Sb0+
113Te5261112.915891(30)1.7(2) minβ+113Sb(7/2+)
114Te5262113.912088(26)15.2(7) minβ+114Sb0+
115Te5263114.911902(30)5.8(2) minβ+115Sb7/2+
115m1Te[n 9]10(6) keV6.7(4) minβ+115Sb(1/2+)
115m2Te280.05(20) keV7.5(2) μsIT115Te11/2−
116Te5264115.908466(26)2.49(4) hβ+116Sb0+
117Te5265116.908646(14)62(2) minEC (75%)117Sb1/2+
β+117Sb
117mTe296.1(5) keV103(3) msIT117Te(11/2−)
118Te5266117.905860(20)6.00(2) dEC118Sb0+
119Te5267118.9064057(78)16.05(5) hEC (97.94%)119Sb1/2+
β+ (2.06%)119Sb
119mTe260.96(5) keV4.70(4) dEC (99.59%)119Sb11/2−
β+ (0.41%)119Sb
120Te5268119.9040658(19)Observationally Stable[n 10]0+9(1)×10−4
121Te5269120.904945(28)19.31(7) dβ+121Sb1/2+
121mTe293.974(22) keV164.7(5) dIT (88.6%)121Te11/2−
β+ (11.4%)121Sb
122Te5270121.9030447(15)Stable0+0.0255(12)
123Te5271122.9042710(15)Observationally Stable[n 11]1/2+0.0089(3)
123mTe247.47(4) keV119.2(1) dIT123Te11/2−
124Te5272123.9028183(15)Stable0+0.0474(14)
125Te[n 12]5273124.9044312(15)Stable1/2+0.0707(15)
125mTe144.775(8) keV57.40(15) dIT125Te11/2−
126Te5274125.9033121(15)Stable0+0.1884(25)
127Te[n 12]5275126.9052270(15)9.35(7) hβ127I3/2+
127mTe88.23(7) keV106.1(7) dIT (97.86%)127Te11/2−
β (2.14%)127I
128Te[n 12][n 13]5276127.90446124(76)2.25(9)×1024 y[n 14]ββ128Xe0+0.3174(8)
128mTe2790.8(3) keV363(27) nsIT128Te(10+)
129Te[n 12]5277128.90659642(76)69.6(3) minβ129I3/2+
129mTe105.51(3) keV33.6(1) dIT (64%)129Te11/2−
β (36%)129I
130Te[n 12][n 13]5278129.906222745(11)7.91(21)×1020 yββ130Xe0+0.3408(62)
130m1Te2146.41(4) keV186(11) nsIT130Te7−
130m2Te2667.2(8) keV1.90(8) μsIT130Te(10+)
130m3Te4373.9(9) keV53(8) nsIT130Te(15−)
131Te[n 12]5279130.908522210(65)25.0(1) minβ131I3/2+
131m1Te182.258(18) keV32.48(11) hβ (74.1%)131I11/2−
IT (25.9%)131Te
131m2Te1940.0(4) keV93(12) msIT131Te(23/2+)
132Te[n 12]5280131.9085467(37)3.204(13) dβ132I0+
132m1Te1774.80(9) keV145(8) nsIT132Te6+
132m2Te1925.47(9) keV28.5(9) μsIT132Te7−
132m3Te2723.3(8) keV3.62(6) μsIT132Te(10+)
133Te5281132.9109633(22)12.5(3) minβ133I3/2+#
133m1Te334.26(4) keV55.4(4) minβ (83.5%)133I(11/2−)
IT (16.5%)133Te
133m2Te1610.4(5) keV100(5) nsIT133Te(19/2−)
134Te5282133.9113964(29)41.8(8) minβ134I0+
134mTe1691.34(16) keV164.5(7) nsIT134Te6+
135Te[n 15]5283134.9165547(18)19.0(2) sβ135I(7/2−)
135mTe1554.89(16) keV511(20) nsIT135Te(19/2−)
136Te5284135.9201012(24)17.63(9) sβ (98.63%)136I0+
β,n (1.37%)135I
137Te5285136.9255994(23)2.49(5) sβ (97.06%)137I3/2−#
β, n (2.94%)136I
138Te5286137.9294725(41)1.46(25) sβ (95.20%)138I0+
β, n (4.80%)137I
139Te5287138.9353672(38)724(81) msβ139I5/2−#
140Te5288139.939487(15)351(5) msβ (?%)140I0+
β, n (?%)139I
141Te5289140.94560(43)#193(16) msβ141I5/2−#
142Te5290141.95003(54)#147(8) msβ142I0+
143Te5291142.95649(54)#120(8) msβ143I7/2+#
144Te5292143.96112(32)#93(60) msβ144I0+
145Te5293144.96778(32)#75# ms
[>550 ns]
β145I
This table header & footer:
  1. ^mTe – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^Order of ground state and isomer is uncertain.
  10. ^Believed to undergo β+β+ decay to120Sn with a half-life over 1.6×1021 years
  11. ^Believed to undergo electron capture to123Sb with a half-life over 9.2×1016 years
  12. ^abcdefgFission product
  13. ^abPrimordialradionuclide
  14. ^Longest measured half-life of any nuclide
  15. ^Very short-livedfission product, responsible for theiodine pit as precursor of135Xe via135I

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of123Te".Physical Review C.67: 014323.arXiv:hep-ex/0211015.Bibcode:2003PhRvC..67a4323A.doi:10.1103/PhysRevC.67.014323.
  3. ^"Standard Atomic Weights: Tellurium".CIAAW. 1969.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
  6. ^abA. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of123Te".Physical Review C.67 (1): 014323.arXiv:hep-ex/0211015.Bibcode:2003PhRvC..67a4323A.doi:10.1103/PhysRevC.67.014323.S2CID 119523039.
  7. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tellurium&oldid=1276787907#Tellurium-125"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp