Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Telegraph process

From Wikipedia, the free encyclopedia
Memoryless continuous-time stochastic process that shows two distinct values

Inprobability theory, thetelegraph process is amemoryless continuous-timestochastic process that shows two distinct values. It modelsburst noise (also called popcorn noise or random telegraph signal). If the two possible values that arandom variable can take arec1{\displaystyle c_{1}} andc2{\displaystyle c_{2}}, then the process can be described by the followingmaster equations:

tP(c1,t|x,t0)=λ1P(c1,t|x,t0)+λ2P(c2,t|x,t0){\displaystyle \partial _{t}P(c_{1},t|x,t_{0})=-\lambda _{1}P(c_{1},t|x,t_{0})+\lambda _{2}P(c_{2},t|x,t_{0})}

and

tP(c2,t|x,t0)=λ1P(c1,t|x,t0)λ2P(c2,t|x,t0).{\displaystyle \partial _{t}P(c_{2},t|x,t_{0})=\lambda _{1}P(c_{1},t|x,t_{0})-\lambda _{2}P(c_{2},t|x,t_{0}).}

whereλ1{\displaystyle \lambda _{1}} is the transition rate for going from statec1{\displaystyle c_{1}} to statec2{\displaystyle c_{2}} andλ2{\displaystyle \lambda _{2}} is the transition rate for going from going from statec2{\displaystyle c_{2}} to statec1{\displaystyle c_{1}}. The process is also known under the namesKac process (after mathematicianMark Kac),[1] anddichotomous random process.[2]

Solution

[edit]

The master equation is compactly written in a matrix form by introducing a vectorP=[P(c1,t|x,t0),P(c2,t|x,t0)]{\displaystyle \mathbf {P} =[P(c_{1},t|x,t_{0}),P(c_{2},t|x,t_{0})]},

dPdt=WP{\displaystyle {\frac {d\mathbf {P} }{dt}}=W\mathbf {P} }

where

W=(λ1λ2λ1λ2){\displaystyle W={\begin{pmatrix}-\lambda _{1}&\lambda _{2}\\\lambda _{1}&-\lambda _{2}\end{pmatrix}}}

is thetransition rate matrix. The formal solution is constructed from the initial conditionP(0){\displaystyle \mathbf {P} (0)} (that defines that att=t0{\displaystyle t=t_{0}}, the state isx{\displaystyle x}) by

P(t)=eWtP(0){\displaystyle \mathbf {P} (t)=e^{Wt}\mathbf {P} (0)}.

It can be shown that[3]

eWt=I+W(1e2λt)2λ{\displaystyle e^{Wt}=I+W{\frac {(1-e^{-2\lambda t})}{2\lambda }}}

whereI{\displaystyle I} is the identity matrix andλ=(λ1+λ2)/2{\displaystyle \lambda =(\lambda _{1}+\lambda _{2})/2} is the average transition rate. Ast{\displaystyle t\rightarrow \infty }, the solution approaches a stationary distributionP(t)=Ps{\displaystyle \mathbf {P} (t\rightarrow \infty )=\mathbf {P} _{s}} given by

Ps=12λ(λ2λ1){\displaystyle \mathbf {P} _{s}={\frac {1}{2\lambda }}{\begin{pmatrix}\lambda _{2}\\\lambda _{1}\end{pmatrix}}}

Properties

[edit]

Knowledge of an initial statedecays exponentially. Therefore, for a timet(2λ)1{\displaystyle t\gg (2\lambda )^{-1}}, the process will reach the following stationary values, denoted by subscripts:

Mean:

Xs=c1λ2+c2λ1λ1+λ2.{\displaystyle \langle X\rangle _{s}={\frac {c_{1}\lambda _{2}+c_{2}\lambda _{1}}{\lambda _{1}+\lambda _{2}}}.}

Variance:

var{X}s=(c1c2)2λ1λ2(λ1+λ2)2.{\displaystyle \operatorname {var} \{X\}_{s}={\frac {(c_{1}-c_{2})^{2}\lambda _{1}\lambda _{2}}{(\lambda _{1}+\lambda _{2})^{2}}}.}

One can also calculate acorrelation function:

X(t),X(u)s=e2λ|tu|var{X}s.{\displaystyle \langle X(t),X(u)\rangle _{s}=e^{-2\lambda |t-u|}\operatorname {var} \{X\}_{s}.}

Application

[edit]

This random process finds wide application in model building:

See also

[edit]

References

[edit]
  1. ^abBondarenko, YV (2000). "Probabilistic Model for Description of Evolution of Financial Indices".Cybernetics and Systems Analysis.36 (5):738–742.doi:10.1023/A:1009437108439.S2CID 115293176.
  2. ^Margolin, G; Barkai, E (2006). "Nonergodicity of a Time Series Obeying Lévy Statistics".Journal of Statistical Physics.122 (1):137–167.arXiv:cond-mat/0504454.Bibcode:2006JSP...122..137M.doi:10.1007/s10955-005-8076-9.S2CID 53625405.
  3. ^Balakrishnan, V. (2020). Mathematical Physics: Applications and Problems. Springer International Publishing. pp. 474
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Telegraph_process&oldid=1160193984"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp