Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2,4,5-Trimethoxyamphetamine

From Wikipedia, the free encyclopedia
(Redirected fromTMA-2 (drug))
Pharmaceutical compound
TMA-2
Clinical data
Other namesTMA-2; 2,4,5-TMA; 2,4,5-Trimethoxy-α-methylphenethylamine; 2,5-Dimethoxy-4-methoxyamphetamine; 4-Methoxy-2,5-dimethoxyamphetamine; DOMeO; DOOMe; DOO
Routes of
administration
Oral[1][2]
Drug classSerotonergic psychedelic;Hallucinogen
ATC code
  • None
Legal status
Legal status
Pharmacokinetic data
Duration of action8–12 hours[1][2]
Identifiers
  • 1-(2,4,5-trimethoxyphenyl)propan-2-amine
CAS Number
PubChemCID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
FormulaC12H19NO3
Molar mass225.288 g·mol−1
3D model (JSmol)
  • CC(CC1=CC(=C(C=C1OC)OC)OC)N
  • InChI=1S/C12H19NO3/c1-8(13)5-9-6-11(15-3)12(16-4)7-10(9)14-2/h6-8H,5,13H2,1-4H3
  • Key:TVSIMAWGATVNGK-UHFFFAOYSA-N

2,4,5-Trimethoxyamphetamine (2,4,5-TMA), also known asTMA-2 or as2,5-dimethoxy-4-methoxyamphetamine (DOMeO), is apsychedelic drug of thephenethylamine andamphetamine families.[1][2] It is one of thetrimethoxyamphetamine (TMA) series ofpositional isomers.[1][2] The drug is also notable in being the 4-methoxylated member of theDOx (i.e., 4-substituted-2,5-dimethoxyamphetamine) series of drugs.[1][2]

Use and effects

[edit]

TMA-2 is aserotonergic psychedelic and produceshallucinogenic effects.[1][2] It is said to be active at doses of 20 to 40 mg and to have aduration of 8 to 12 hours.[1][4] It is much morepotent than its positional isomer3,4,5-trimethoxyamphetamine (3,4,5-TMA, TMA, or TMA-1), which is said to be active at doses of 100 to 250 mg and to have a duration of 6 to 8 hours.[5] However,DOM (2,5-dimethoxy-4-methylamphetamine), theanalogue of TMA-2 in which its 4-methoxy group has been replaced with a morelipophilic 4-methyl group, is about 10 times more potent than TMA-2.[6]

Interactions

[edit]
See also:Psychedelic drug § Interactions, andTrip killer § Serotonergic psychedelic antidotes

Pharmacology

[edit]

Pharmacodynamics

[edit]
TMA-2 activities
TargetAffinity (Ki, nM)
5-HT1A>10,000
5-HT1B>10,000
5-HT1D>10,000
5-HT1E>10,000
5-HT1FND
5-HT2A57.9–1,300 (Ki)
190–1,860 (EC50Tooltip half-maximal effective concentration)
84–102% (EmaxTooltip maximal efficacy)
5-HT2B154–307 (Ki)
270 (EC50)
78% (
Emax)
5-HT2C87.7–5,300
5-HT3>10,000
5-HT4ND
5-HT5A>10,000
5-HT6>10,000
5-HT7>10,000
α1A,α1B>10,000
α1DND
α2Aα2C>10,000
β1,β2>10,000
D1D5>10,000
H11,407
H2H4>10,000
M1,M3,M4ND
M2,M5>10,000
TAAR1>4,400 (Ki) (mouse)
3,100 (Ki) (rat)
ND (EC50) (human)
I1ND
σ1,σ2ND
SERTTooltip Serotonin transporter>10,000 (Ki)
>100,000 (IC50Tooltip half-maximal inhibitory concentration)
>100,000 (EC50) (rat)
NETTooltip Norepinephrine transporter>10,000 (Ki)
>100,000 (IC50)
>100,000 (
EC50) (rat)
DATTooltip Dopamine transporter>10,000 (Ki)
>100,000 (IC50)
>100,000 (
EC50) (rat)
MAO-ATooltip Monoamine oxidase A>100,000 (IC50) (rat)
MAO-BTooltip Monoamine oxidase B>100,000 (IC50) (rat)
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified.Refs:[7][8][9][10][11][12][13][14][15]

TMA-2'saffinity (Ki) for theserotonin5-HT2A receptor has been found to be 1,300 nM.[10] ItsEC50Tooltip half-maximal effective concentration at the receptor was 190 nM and itsEmaxTooltip maximal efficacy was 84%.[10] The drug was also active at the serotonin5-HT2B receptor and, to a much lesser extent, at the serotonin5-HT2C receptor.[10] In an earlier study, its affinities (Ki) were 1,650 nM at the serotonin5-HT2 receptor and 46,400 nM at the serotonin5-HT1 receptor.[16][17] TMA-2 is inactive at themonoamine transporters.[14][10] It was inactive at the mousetrace amine-associated receptor 1 (TAAR1), whereas it bound to the rat TAAR1 with an affinity (Ki) of 3,100 nM and was not assessed at the human TAAR1.[10]

Chemistry

[edit]

Derivatives

[edit]
See also:2,5-Dimethoxy-4-ethoxyamphetamine § Derivatives

A variety ofderivatives of TMA-2 have been developed and studied.[10][18]

History

[edit]

TMA-2 was first described in thescientific literature by Bruckner in 1933.[19][2][20] Subsequently,Alexander Shulgin first described the hallucinogenic effects of TMA-2 in 1964.[19][21][22][2]

Society and culture

[edit]

Legal status

[edit]

As of 2011, TMA-2 is not an explicitlycontrolled substance in theUnited States.[2][3] However, it is apositional isomer of3,4,5-trimethoxyamphetamine (TMA), and thus is aSchedule I controlled substance in states in which isomers are controlled substances.[2][3]

See also

[edit]

References

[edit]
  1. ^abcdefgShulgin AT, Shulgin A (1991)."#158 TMA-2 2,4,5-TRIMETHOXYAMPHETAMINE".PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press.ISBN 9780963009609.OCLC 25627628.
  2. ^abcdefghijkShulgin A, Manning T, Daley PF (2011)."#118. TMA-2".The Shulgin Index, Volume One: Psychedelic Phenethylamines and Related Compounds. Vol. 1. Berkeley: Transform Press.ISBN 978-0-9630096-3-0.
  3. ^abc"Controlled Substances"(PDF).www.deadiversion.usdoj.gov.
  4. ^Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD (May 2020)."Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species"(PDF).Neuropharmacology.167 107933.doi:10.1016/j.neuropharm.2019.107933.PMC 9191653.PMID 31917152.Table 4 Human potency data for selected hallucinogens. [...]
  5. ^Shulgin AT, Shulgin A (1991)."#157 TMA 3,4,5-TRIMETHOXYAMPHETAMINE".PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press.ISBN 9780963009609.OCLC 25627628.
  6. ^Nichols, David E. (2012)."Structure–activity relationships of serotonin 5-HT2A agonists".Wiley Interdisciplinary Reviews: Membrane Transport and Signaling.1 (5):559–579.doi:10.1002/wmts.42.ISSN 2190-460X.
  7. ^"Kᵢ Database".PDSP. 15 March 2025. Retrieved15 March 2025.
  8. ^Liu, Tiqing."BDBM50005253 (+/-)1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine::1-(2,4,5-trimethoxyphenyl)propan-2-amine::1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine::1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine(2,4,5-TMA)::CHEMBL8389".BindingDB. Retrieved14 March 2025.
  9. ^Ray TS (February 2010)."Psychedelics and the human receptorome".PLOS ONE.5 (2) e9019.Bibcode:2010PLoSO...5.9019R.doi:10.1371/journal.pone.0009019.PMC 2814854.PMID 20126400.
  10. ^abcdefgKolaczynska KE, Luethi D, Trachsel D, Hoener MC, Liechti ME (2019)."Receptor Interaction Profiles of 4-Alkoxy-Substituted 2,5-Dimethoxyphenethylamines and Related Amphetamines".Front Pharmacol.10 1423.doi:10.3389/fphar.2019.01423.PMC 6893898.PMID 31849671.
  11. ^Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (January 1999)."Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors".Naunyn Schmiedebergs Arch Pharmacol.359 (1):1–6.doi:10.1007/pl00005315.PMID 9933142.
  12. ^Flanagan TW, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD (April 2021)."Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore".ACS Pharmacol Transl Sci.4 (2):488–502.doi:10.1021/acsptsci.0c00063.PMC 8033619.PMID 33860179.
  13. ^Halberstadt AL, Luethi D, Hoener MC, Trachsel D, Brandt SD, Liechti ME (January 2023)."Use of the head-twitch response to investigate the structure-activity relationships of 4-thio-substituted 2,5-dimethoxyphenylalkylamines"(PDF).Psychopharmacology (Berl).240 (1):115–126.doi:10.1007/s00213-022-06279-2.PMC 9816194.PMID 36477925.
  14. ^abNagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007)."The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain".Eur J Pharmacol.559 (2–3):132–137.doi:10.1016/j.ejphar.2006.11.075.PMID 17223101.
  15. ^Reyes-Parada M, Iturriaga-Vasquez P, Cassels BK (2019)."Amphetamine Derivatives as Monoamine Oxidase Inhibitors".Frontiers in Pharmacology.10 1590.doi:10.3389/fphar.2019.01590.PMC 6989591.PMID 32038257.
  16. ^Glennon RA (January 1987). "Central serotonin receptors as targets for drug research".J Med Chem.30 (1):1–12.doi:10.1021/jm00384a001.PMID 3543362.Table II. Affinities of Selected Phenalkylamines for 5-HT1 and 5-HT2 Binding Sites
  17. ^Shannon M, Battaglia G, Glennon RA, Titeler M (June 1984). "5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA)".Eur J Pharmacol.102 (1):23–29.doi:10.1016/0014-2999(84)90333-9.PMID 6479216.
  18. ^Trachsel D (2012)."Fluorine in psychedelic phenethylamines".Drug Test Anal.4 (7–8):577–590.doi:10.1002/dta.413.PMID 22374819.
  19. ^abShulgin AT (1978)."Psychotomimetic Drugs: Structure-Activity Relationships". In Iversen LL, Iversen SD, Snyder SH (eds.).Stimulants. Boston, MA: Springer US. pp. 243–333.doi:10.1007/978-1-4757-0510-2_6.ISBN 978-1-4757-0512-6.3.1.6. 2,4,5-Trimethoxyphenylisopropylamine This geometric isomer of TMA was first synthesized by Bruckner (1933) and its psychotomimetic properties were first observed some 30 years later (Shulgin, 1964a), 2,4,5-Trimethoxyphenylisopropylamine (34, TMA-2, 2,4,5-trimethoxyamphetamine) was the second of the six possible positional isomers found to be psychotomimetic, and was thus called TMA-2.
  20. ^Bruckner, Viktor (24 October 1933). "Über das Pseudonitrosit des Asarons".Journal für Praktische Chemie.138 (9–10):268–274.doi:10.1002/prac.19331380907.ISSN 0021-8383.
  21. ^Shulgin AT (July 1964). "Psychotomimetic amphetamines: methoxy 3,4-dialkoxyamphetamines".Experientia.20 (7):366–367.doi:10.1007/BF02147960.PMID 5855670.
  22. ^Shulgin AT (May 1966). "The six trimethoxyphenylisopropylamines (trimethoxyamphetamines)".J Med Chem.9 (3):445–446.doi:10.1021/jm00321a058.PMID 5960939.

External links

[edit]
Tryptamines
No ring subs.
4-Hydroxytryptamines
5-Hydroxytryptamines
5-Methoxytryptamines
Other ring subs.
α-Alkyltryptamines
Others
Cyclized
Bioisosteres
Phenethylamines
Scalines
2C-x
3C-x
DOx
4C-x
Ψ-PEA
MDxx
FLY
25x-NB (NBOMes)
Others
Cyclized
Lysergamides
  • Bioisosteres:JRT
Others
Natural sources
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
TAAR1Tooltip Trace amine-associated receptor 1
Agonists
Endogenous
Exogenous
Antagonists
Inverse agonists
TAAR5Tooltip Trace amine-associated receptor 5
Agonists
Inverse agonists
Notes: (1) TAAR1 activity of ligands varies significantly between species. Some agents that are TAAR1 ligands in some species are not in other species. This navbox includes all TAAR1 ligands regardless of species. (2) See the individual pages for references, as well as theList of trace amines,TAAR, andTAAR1 pages.
See also:Receptor/signaling modulators
Phenethylamines
Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
(and further-extended)
Catecholamines
(and close relatives)
Cyclized
phenethylamines
Phenylalkylpyrrolidines
2-Benzylpiperidines
(phenidates)
Phenylmorpholines
(phenmetrazines)
Phenyloxazolamines
(aminorexes)
Isoquinolines and
tetrahydroisoquinolines
2-Aminoindanes
2-Aminotetralins
Others / unsorted
Related compounds
Stimulants
Depressants
Hallucinogens
Entactogens
Psychiatric drugs
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=2,4,5-Trimethoxyamphetamine&oldid=1323694001"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp