Systems thinking is a way of making sense of the complexity of the world by looking at itin terms of wholes andrelationships rather than by splitting it down into its parts.[1][2] It has been used as a way of exploring and developing effective action in complex contexts,[3] enablingsystems change.[4][5] Systems thinking draws on and contributes tosystems theory and thesystem sciences.[6]
By 1824, theCarnot cycle presented an engineering challenge, which was how to maintain the operating temperatures of the hot and cold working fluids of thephysical plant.[12] In 1868,James Clerk Maxwell presented a framework for, and a limited solution to, the problem of controlling the rotational speed of a physical plant.[13] Maxwell's solution echoedJames Watt's (1784) centrifugal moderator (denoted as elementQ) for maintaining (but not enforcing) the constant speed of a physical plant (that is,Q represents a moderator, but not a governor, by Maxwell's definition).[14][a]
Systems thinking, born from the visionary contributions of theoretical biologistLudwig von Bertalanffy, computer scientistJay Forrester, and their contemporaries, reached its zenith in the 1990s with the release ofPeter Senge’s seminal work,The Fifth Discipline, a landmark in intellectual exploration.[19]
"So, how do we change thestructure of systems to produce more of what we want and less of that which is undesirable? ... MIT’sJay Forrester likes to say that the average manager can ... guess with great accuracy where to look for leverage points—places in the system where a small change could lead to a large shift in behavior".[20]: 146 —Donella Meadows, (2008)Thinking In Systems: A Primer p.145[c]
System boundary in contextSystem input and output allows exchange of energy and information across boundary.
...What is a system? A system is a set of things ... interconnected in such a way that they produce their own pattern of behavior over time. ... But the system’s response to these forces is characteristic of itself, and that response is seldom simple in the real world
Subsystems serve as part of a larger system, but each comprises a system in its own right. Each frequently can be described reductively, with properties obeying its own laws, such as Newton's System of the World, in which entireplanets,stars, and their satellites can be treated, sometimes in a scientific way as dynamical systems, entirely mathematically, as demonstrated byJohannes Kepler's equation (1619) for the orbit of Mars before Newton'sPrincipia appeared in 1687.
Thermodynamic systems were treated as early as the eighteenth century, in which it was discovered thatheat could be created without limit, but that forclosed systems,laws of thermodynamics could be formulated.[41]Ilya Prigogine (1980) has identified situations in which systems far from equilibrium can exhibit stable behavior;[42] once a Lyapunov function has been identified, future and past can be distinguished, and scientific activity can begin.[41]: 212–213
DSRP, a framework for systems thinking that attempts to generalise all other approaches.
Ontology engineering of representation, formal naming and definition of categories, and the properties and the relations between concepts, data, and entities.
^A solution to the equations for a dynamical system can be afflicted by instability or oscillation.[15]: 7:33 The Governor: A corrective action against error can solve the dynamical equation by integrating the error.[15]: 29:44 [16]
^Donella Meadows,Thinking In Systems: A Primer[20][21] Overview, in video clips: Chapter 1[22] Chapter 2, part 1[23] Chapter 2, part 2[24] Chapter 3[25] Chapter 4[26] Chapter 5[27] Chapter 6[28] Chapter 7[29]
^abMarchal, J. H. (1975)."On the Concept of a System".Philosophy of Science.42 (4). [Cambridge University Press, The University of Chicago Press, Philosophy of Science Association]:448–468.doi:10.1086/288663.ISSN0031-8248.JSTOR187223. Retrieved2024-05-31. as reprinted in Gerald Midgely (ed.) (2002)Systems thinking volOne
^Cannon, W.B. (1932).The Wisdom of the Body. New York: W. W. Norton. pp. 177–201.
^Cannon, W. B. (1926). "Physiological regulation of normal states: some tentative postulates concerning biological homeostatics". In A. Pettit (ed.).A Charles Riches amis, ses collègues, ses élèves (in French). Paris: Les Éditions Médicales. p. 91.
Adam Walls & John Flach (2024) "Do systems exist? A conversation: A short discussion on founding concepts behind general systems theory and soft systems.
Russell L. Ackoff (1968) "General Systems Theory and Systems Research Contrasting Conceptions of Systems Science." in:Views on a General Systems Theory: Proceedings from the Second System Symposium, Mihajlo D. Mesarovic (ed.).