Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Symmetric decreasing rearrangement

From Wikipedia, the free encyclopedia

Inmathematics, thesymmetric decreasing rearrangement of a function is a function which is symmetric and decreasing, and whoselevel sets are of the same size as those of the original function.[1]

Definition for sets

[edit]

Given ameasurable set,A,{\displaystyle A,} inRn,{\displaystyle \mathbb {R} ^{n},} one defines thesymmetric rearrangement ofA,{\displaystyle A,} calledA,{\displaystyle A^{*},} as the ball centered at the origin, whose volume (Lebesgue measure) is the same as that of the setA.{\displaystyle A.}

An equivalent definition isA={xRn:ωn|x|n<|A|},{\displaystyle A^{*}=\left\{x\in \mathbb {R} ^{n}:\,\omega _{n}\cdot |x|^{n}<|A|\right\},}whereωn{\displaystyle \omega _{n}} is the volume of theunit ball and where|A|{\displaystyle |A|} is the volume ofA.{\displaystyle A.}

Definition for functions

[edit]

The rearrangement of a non-negative, measurable real-valued functionf{\displaystyle f} whose level setsf1(y){\displaystyle f^{-1}(y)} (foryR0{\displaystyle y\in \mathbb {R} _{\geq 0}}) have finite measure isf(x)=0I{y:f(y)>t}(x)dt,{\displaystyle f^{*}(x)=\int _{0}^{\infty }\mathbb {I} _{\{y:f(y)>t\}^{*}}(x)\,dt,}whereIA{\displaystyle \mathbb {I} _{A}} denotes theindicator function of the setA.{\displaystyle A.} In words, the value off(x){\displaystyle f^{*}(x)} gives the heightt{\displaystyle t} for which the radius of the symmetricrearrangement of{y:f(y)>t}{\displaystyle \{y:f(y)>t\}} is equal tox.{\displaystyle x.} We have the following motivation for this definition. Because the identityg(x)=0I{y:g(y)>t}(x)dt,{\displaystyle g(x)=\int _{0}^{\infty }\mathbb {I} _{\{y:g(y)>t\}}(x)\,dt,}holds for any non-negative functiong,{\displaystyle g,} the above definition is the unique definition that forces the identityIA=IA{\displaystyle \mathbb {I} _{A}^{*}=\mathbb {I} _{A^{*}}} to hold.

Properties

[edit]
Function and its symmetric decreasing rearrangement preserve the measure of level sets.

The functionf{\displaystyle f^{*}} is a symmetric and decreasing function whose level sets have the same measure as the level sets off,{\displaystyle f,} that is,|{x:f(x)>t}|=|{x:f(x)>t}|.{\displaystyle |\{x:f^{*}(x)>t\}|=|\{x:f(x)>t\}|.}

Iff{\displaystyle f} is a function inLp,{\displaystyle L^{p},} thenfLp=fLp.{\displaystyle \|f\|_{L^{p}}=\|f^{*}\|_{L^{p}}.}

TheHardy–Littlewood inequality holds, that is,fgfg.{\displaystyle \int fg\leq \int f^{*}g^{*}.}

Further, thePólya–Szegő inequality holds. This says that if1p<{\displaystyle 1\leq p<\infty } and iffW1,p{\displaystyle f\in W^{1,p}} thenfpfp.{\displaystyle \|\nabla f^{*}\|_{p}\leq \|\nabla f\|_{p}.}

The symmetric decreasing rearrangement is order preserving and decreasesLp{\displaystyle L^{p}} distance, that is,fg implies fg{\displaystyle f\leq g{\text{ implies }}f^{*}\leq g^{*}}andfgLpfgLp.{\displaystyle \|f-g\|_{L^{p}}\geq \|f^{*}-g^{*}\|_{L^{p}}.}

Applications

[edit]

The Pólya–Szegő inequality yields, in the limit case, withp=1,{\displaystyle p=1,} theisoperimetric inequality. Also, one can use some relations with harmonic functions to prove theRayleigh–Faber–Krahn inequality.

Nonsymmetric decreasing rearrangement

[edit]

We can also definef{\displaystyle f^{*}} as a function on the nonnegative real numbers rather than on all ofRn.{\displaystyle \mathbb {R} ^{n}.}[2] Let(E,μ){\displaystyle (E,\mu )} be aσ-finite measure space, and letf:E[,]{\displaystyle f:E\to [-\infty ,\infty ]} be ameasurable function that takes only finite (that is, real) valuesμ-a.e. (where "μ{\displaystyle \mu }-a.e." means except possibly on a set ofμ{\displaystyle \mu }-measure zero). We define thedistribution functionμf:[0,][0,]{\displaystyle \mu _{f}:[0,\infty ]\to [0,\infty ]} by the ruleμf(s)=μ{xE:|f(x)|>s}.{\displaystyle \mu _{f}(s)=\mu \{x\in E:\vert f(x)\vert >s\}.}We can now define thedecreasing rearrangment (or, sometimes,nonincreasing rearrangement) off{\displaystyle f} as the functionf:[0,)[0,]{\displaystyle f^{*}:[0,\infty )\to [0,\infty ]} by the rulef(t)=inf{s[0,]:μf(s)t}.{\displaystyle f^{*}(t)=\inf\{s\in [0,\infty ]:\mu _{f}(s)\leq t\}.}Note that this version of the decreasing rearrangement is not symmetric, as it is only defined on the nonnegative real numbers. However, it inherits many of the same properties listed above as the symmetric version, namely:

The (nonsymmetric) decreasing rearrangement function arises often in the theory of rearrangement-invariant Banach function spaces. Especially important is the following:

Luxemburg Representation Theorem. Letρ{\displaystyle \rho } be a rearrangement-invariant Banach function norm over a resonant measure space(E,μ).{\displaystyle (E,\mu ).} Then there exists a (possibly not unique) rearrangement-invariant function normρ¯{\displaystyle {\overline {\rho }}} on[0,){\displaystyle [0,\infty )} such thatρ(f)=ρ¯(f){\displaystyle \rho (f)={\overline {\rho }}(f^{*})} for all nonnegative measurable functionsf:E[0,]{\displaystyle f:E\to [0,\infty ]} which are finite-valuedμ{\displaystyle \mu }-a.e.

Note that the definitions of all the terminology in the above theorem (that is, Banach function norms, rearrangement-invariant Banach function spaces, and resonant measure spaces) can be found in sections 1 and 2 of Bennett and Sharpley's book (cf. the references below).

See also

[edit]

References

[edit]
  1. ^Lieb, Elliott;Loss, Michael (2001).Analysis. Graduate Studies in Mathematics. Vol. 14 (2nd ed.).American Mathematical Society.ISBN 978-0821827833.
  2. ^Bennett, Colin; Sharpley, Robert (1988).Interpolation of Operators.ISBN 978-0-120-88730-9.
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Symmetric_decreasing_rearrangement&oldid=1149052631"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp