Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Superconducting wire

From Wikipedia, the free encyclopedia
Wires exhibiting zero resistance

An example of a wire (V3Ga alloy) used in a superconducting magnet

Superconducting wires areelectrical wires made ofsuperconductive material. When cooled below theirtransition temperatures, they have zeroelectrical resistance. Most commonly, conventional superconductors such asniobium–titanium are used,[1] but high-temperature superconductors such asYBCO are entering the market.

Superconducting wire's advantages overcopper or aluminum include higher maximumcurrent densities and zero powerdissipation. Its disadvantages include the cost ofrefrigeration of the wires to superconducting temperatures (often requiringcryogens such asliquid nitrogen orliquid helium), the danger of the wirequenching (a sudden loss of superconductivity), the inferior mechanical properties of some superconductors, and the cost of wire materials and construction.[2]

Its main application is insuperconducting magnets, which are used in scientific and medical equipment where high magnetic fields are necessary.

Important parameters

[edit]

The construction andoperating temperature will typically be chosen to maximise:

  • Critical temperature Tc, the temperature below which the wire becomes a superconductor
  • Criticalcurrent density Jc, the maximumcurrent a superconducting wire can carry per unit cross-sectional area (see images below for examples with 20 kA/cm2).

Superconducting wires/tapes/cables usually consist of two key features:

  • The superconducting compound (usually in the form of filaments/coating)
  • A conduction stabilizer, which carries the current in case of the loss of superconductivity (known asquenching) in the superconducting material.[3][4]

The current sharing temperature Tcs is the temperature at which the current transported through the superconductor also starts to flow through the stabilizer.[5][6] However, Tcs is not the same as the quench temperature (or critical temperature) Tc; in the former case, there is partial loss of superconductivity, while in the latter case, the superconductivity is entirely lost.[7]

LTS wire

[edit]

Low-temperature superconductor (LTS) wires are made from superconductors with lowcritical temperature, such as Nb3Sn (niobium–tin) and NbTi (niobium–titanium). Often the superconductor is in filament form in a copper or aluminium matrix which carries the current should the superconductor quench for any reason. The superconductor filaments can form a third of the total volume of the wire.

Preparation

[edit]

Wire drawing

[edit]

The normalwire-drawing process can be used for malleable alloys such as niobium–titanium.

Surface diffusion

[edit]

Vanadium–gallium (V3Ga) can be prepared by surface diffusion where the high temperature component as a solid is bathed in the other element as liquid or gas.[8] When all components remain in the solid state during high temperature diffusion this is known as the bronze process.[9]

  • Cross sections of various (Nb,Ti)3Sn composite superconducting cables and wires. (440 to 7,800 A in 8 to 19 tesla fields).
    Cross sections of various (Nb,Ti)3Sn composite superconducting cables and wires. (440 to 7,800 A in 8 to 19 tesla fields).
  • V3Ga superconducting tape (10×0.14 mm cross section). A vanadium core is covered with 15 μm V3Ga layer, then 20 μm bronze (stabilizing layer) and 15 μm insulating layer. Critical current 180 A (19.2 tesla, 4.2 K), critical current density 20 kA/cm2
    V3Ga superconducting tape (10×0.14 mm cross section). A vanadium core is covered with 15 μm V3Ga layer, then 20 μm bronze (stabilizing layer) and 15 μm insulating layer. Critical current 180 A (19.2 tesla, 4.2 K), critical current density 20 kA/cm2
  • Nb/Cu–7.5at%Sn–0.4at%Ti tape (9.5×1.8 mm cross section) originally developed for an 18.1 T magnet. Nb core: 361×348 packs of 5 μm dia. filaments. Critical current 1700 A (16 tesla, 4.2 K), critical current density 20 kA/cm2
    Nb/Cu–7.5at%Sn–0.4at%Ti tape (9.5×1.8 mm cross section) originally developed for an 18.1 T magnet. Nb core: 361×348 packs of 5 μm dia. filaments. Critical current 1700 A (16 tesla, 4.2 K), critical current density 20 kA/cm2

HTS wire

[edit]

High-temperature superconductor (HTS) wires are made from superconductors with highcritical temperature (high-temperature superconductivity), such asYBCO andBSCCO.

Powder-in-tube

[edit]
Simplified diagram of the PIT process

The powder-in-tube (PIT, oroxide powder in tube, OPIT) process is anextrusion process often used for making electrical conductors from brittlesuperconducting materials such asniobium–tin[10] ormagnesium diboride,[11] and ceramiccuprate superconductors such asBSCCO.[12][13] It has been used to form wires of theiron pnictides.[14] (PIT is not used for yttrium barium copper oxide as it does not have the weak layers required to generate adequate 'texture' (alignment) in the PIT process.)

This process is used because thehigh-temperature superconductors are too brittle fornormal wire forming processes. The tubes are metal, oftensilver. Often the tubes are heated to react the mix of powders. Once reacted the tubes are sometimes flattened to form a tape-like conductor. The resulting wire is not as flexible as conventional metal wire, but is sufficient for many applications.

There arein situ andex situ variants of the process, as well a 'double core' method that combines both.[15]

Coated superconductor tape or wire

[edit]

These wires are in a form of a metal tape of about 10 mm width and about 100 micrometer thickness, coated with superconductor materials such asYBCO. A few years after the discovery ofHigh-temperature superconductivity materials such as theYBCO, it was demonstrated thatepitaxialYBCOthin films grown on lattice matchedsingle crystals such as magnesium oxideMgO,strontium titanate (SrTiO3) andsapphire had high supercritical current densities of 10–40 kA/mm2.[16][17] However, a lattice-matched flexible material was needed for producing a long tape. YBCO films deposited directly on metal substrate materials exhibit poor superconducting properties. It was demonstrated that a c-axis oriented yttria-stabilized zirconia (YSZ) intermediate layer on a metal substrate can yield YBCO films of higher quality, which had still one to two orders less critical current density than that produced on the single crystal substrates.[18][19]

The breakthrough came with the invention ofion beam-assisted deposition (IBAD) technique to produce of biaxially alignedyttria-stabilized zirconia (YSZ) thin films on metal tapes and the Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS) process to produce biaxially textured metallic substrates via thermomechanically processing.[20][21]

In the IBAD process, the biaxially-textured YSZ film provided a single-crystal-like template for theepitaxial growth of the YBCO films. These YBCO films achieved critical current density of more than 1 MA/cm2. Other buffer layers such ascerium oxide (CeO2) andmagnesium oxide (MgO) were produced using theIBAD technique for the superconductor films.[22][23] Details of the IBAD substrates and technology were reviewed by Arendt.[24] The process of LMO-enabled IBAD–MgO was invented and developed at the Oak Ridge National Laboratory and won a R&D100 Award in 2007.[25] This LMO-enabled substrate process is now being used by essentially all manufacturers of HST wire based on the IBAD substrate.In the RABiTS substrates, the metallic template itself was biaxially-textured and heteroepitaxial buffer layers of Y2O3, YSZ and CeO2 were then deposited on the metallic template, followed by heterepitaxial deposition of the superconductor layer. Details of the RABiTS substrates and technology were reviewed by Goyal.[26]

As of 2015[update], YBCO coated superconductor tapes capable of carrying more than 500 A/cm-width at 77 K and 1000 A/cm-width at 30 K under high magnetic field have been demonstrated.[27][28][29][30] In 2021 YBCO coated superconductor tapes capable of carrying more than 250 A/cm-width at 77 K and 2500 A/cm-width at 20 K were reported for commercially produced wires.[31] In 2021 an experimental demonstration of an over-doped YBCO film reported 90 MA/cm2 at 5 K and 6 MA/cm2 at 77 K in a 7 T magnetic field.[32]

Metal organic chemical vapor deposition

[edit]

Metal organic chemical vapor deposition (MOCVD) is one of the deposition processes used for fabrication ofYBCO coated conductor tapes. Ignatiev provides an overview of MOCVD processes used to depositYBCO films via MOCVD deposition.[33]

Reactive co-evaporation

[edit]

Superconducting layer in the 2nd generation superconducting wires can also be grown by thermal evaporation of constituent metals,rare-earth element,barium, andcopper. Prusseit provides an overview of the thermal evaporation process used to deposit high-qualityYBCO films.[34]

Pulsed laser deposition

[edit]

Superconducting layer in the 2nd generation superconducting wires can also be grown by pulsed laser deposition (PLD). Christen provides an overview of the PLD process used to deposit high-qualityYBCO films.[35]

Standards

[edit]

There are several IEC (International Electrotechnical Commission) standards related to superconducting wires under TC90.

See also

[edit]

References

[edit]
  1. ^"Characteristics of Superconducting Magnets".Superconductivity Basics. American Magnetics Inc. 2008. RetrievedOctober 11, 2008.
  2. ^Dumé, Belle (July 26, 2006)."Superconducting wire breaks record".Physics World. Archived fromthe original on October 30, 2007. RetrievedSeptember 3, 2009.
  3. ^Wilson, Martin N. "Superconducting magnets." (1983).
  4. ^"Unit 4: Practical superconductors for accelerator magnets"(PDF).
  5. ^Bottura, L. "Magnet quench 101." arXiv preprint arXiv:1401.3927 (2014).
  6. ^Cutillas, Trueba; Manuel, Jose (September 20, 2017)."Effective field in large size superconducting cables for fusion".
  7. ^Ekin, Jack. Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing. Oxford university press, 2006.
  8. ^Matsushita, Teruo; Kikitsu, Akira; Sakata, Haruhisa; Yamafuji, Kaoru; Nagata, Masayuki (1986). "Elementary Pinning Force of Grain Boundaries in Superconducting V3Ga Tapes".Japanese Journal of Applied Physics.25 (9): L792.Bibcode:1986JaJAP..25L.792M.doi:10.1143/JJAP.25.L792.S2CID 98297536.
  9. ^Dew-Hughes, D. (1978). "Solid-state (bronze process) V3Ga from a V–Al alloy core".Journal of Applied Physics.49 (1):327–332.Bibcode:1978JAP....49..327D.doi:10.1063/1.324390.
  10. ^Lindenhovius, J.L.H.; Hornsveld, E.M.; Den Ouden, A.; Wessel, W.A.J.; Ten Kate, H.H.J. (2000)."Powder-in-tube (PIT) Nb/sub 3/Sn conductors for high-field magnets"(PDF).IEEE Transactions on Applied Superconductivity.10 (1):975–978.Bibcode:2000ITAS...10..975L.doi:10.1109/77.828394.S2CID 26260700.
  11. ^Glowacki, B.A; Majoros, M; Vickers, M.E; Zeimetz, B (2001). "Superconducting properties of the powder-in-tube Cu–Mg–B and Ag–Mg–B wires".Physica C: Superconductivity.372–376:1254–1257.arXiv:cond-mat/0109085.Bibcode:2002PhyC..372.1254G.doi:10.1016/S0921-4534(02)00986-3.S2CID 119339527.
  12. ^Larbalestier, David et al. (1997)Ch. 5 "Sheathed or Powder-in-Tube Conductors" inWTEC Panel Report on Power Applications of Superconductivity in Japan and Germany
  13. ^Beales, Timothy P.; Jutson, Jo; Le Lay, Luc; Mölgg, Michelé (1997). "Comparison of the powder-in-tube processing properties of two (Bi2−xPbx)Sr2Ca2Cu3O10+δ powders".Journal of Materials Chemistry.7 (4): 653.doi:10.1039/a606896k.
  14. ^Ma, Y.; et al. (2009). "Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method".Physica C.469 (9–12):651–656.arXiv:0906.3114.Bibcode:2009PhyC..469..651M.doi:10.1016/j.physc.2009.03.024.S2CID 118367961.
  15. ^Nakane, T.; Takahashi, K.; Kitaguchi, H.; Kumakura, H. (2009). "Fabrication of Cu-sheathed MgB2 wire with high Jc–B performance using a mixture ofin situ andex situ PIT techniques".Physica C: Superconductivity.469 (15–20):1531–1535.Bibcode:2009PhyC..469.1531N.doi:10.1016/j.physc.2009.05.227.
  16. ^Blue, C., & Boolchand, P. (1991). "In situ preparation of superconducting Y1Ba2Cu3O7−δ thin films by on-axis rf magnetron sputtering from a stoichiometric target".Applied Physics Letters.58 (18): 2036.Bibcode:1991ApPhL..58.2036B.doi:10.1063/1.105005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^Savvides, N., & Katsaros, A. (1993)."In situ growth of epitaxial YBa2Cu3O7 thin films by on-axis unbalanced direct current magnetron sputtering".Applied Physics Letters.62 (5): 528.Bibcode:1993ApPhL..62..528S.doi:10.1063/1.108901.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^Russo, R. E., Reade, R. P., McMillan, J. M., & Olsen, B. L. (1990)."Metal buffer layers and Y–Ba–Cu–O thin films on Pt and stainless steel using pulsed laser deposition".Journal of Applied Physics.68 (3): 1354.Bibcode:1990JAP....68.1354R.doi:10.1063/1.346681.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^Reade, R. P., Berdahl, P., Russo, R. E., & Garrison, S. M. Laser (1992)."deposition of biaxially textured yttria-stabilized zirconia buffer layers on polycrystalline metallic alloys for high critical current Y–Ba–Cu–O thin films".Applied Physics Letters.61 (18): 2231.Bibcode:1992ApPhL..61.2231R.doi:10.1063/1.108277.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^Iijima, Y.; Tanabe, N.; Kohno, O.; Ikeno, Y. (1992). "In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates".Applied Physics Letters.60 (6): 769.Bibcode:1992ApPhL..60..769I.doi:10.1063/1.106514.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^Goyal; et al. (1996). "High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals".Applied Physics Letters.69 (12): 1795.Bibcode:1996ApPhL..69.1795G.doi:10.1063/1.117489.
  22. ^Gnanarajan, S., Katsaros, A., & Savvides, N. (1997). "Biaxially aligned buffer layers of cerium oxide, yttria stabilized zirconia, and their bilayers".Applied Physics Letters.70 (21): 2816.Bibcode:1997ApPhL..70.2816G.doi:10.1063/1.119017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., & Hammond, R. H (1997). "Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia".Applied Physics Letters.71 (20): 2955.Bibcode:1997ApPhL..71.2955W.doi:10.1063/1.120227.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^Paul Arendt, Chapter 1 titled "IBAD Template Films for Coated Conductors", pages 3–28 in Book titled Second-Generation HTS Conductors, edited by Goyal, Amit. Springer New York, NY, 2005,https://doi.org/10.1007/b106635, Hardcover ISBN 978-1-4020-8117-0.
  25. ^"ORNL wins six R&D 100 Awards, pushing total to 134 | ORNL".
  26. ^Amit Goyal, Chapter 2 titled "Epitaxial Superconductors on Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS)", pages 29–46 in Book titled Second-Generation HTS Conductors, edited by Goyal, Amit. Springer New York, NY, 2005,https://doi.org/10.1007/b106635, Hardcover ISBN 978-1-4020-8117-0.
  27. ^Foltyn, S.R.; Arendt, P.N.; Dowden, P.C.; Depaula, R.F.; Groves, J.R.; Coulter, J.Y.; Quanxi Jia; Maley, M.P.; Peterson, D.E. (1999)."High-Tc coated conductors-performance of meter-long YBCO/IBAD flexible tapes".IEEE Transactions on Applied Superconductivity.9 (2): 1519.Bibcode:1999ITAS....9.1519F.doi:10.1109/77.784682.S2CID 8640817.
  28. ^Usoskin, A., & Freyhardt, H. C. (2011). "YBCO-Coated Conductors Manufactured by High-Rate Pulsed Laser Deposition".MRS Bulletin.29 (8):583–589.doi:10.1557/mrs2004.165.S2CID 137126501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^Pahlke, Patrick; Hering, Michael; Sieger, Max; Lao, Mayraluna; Eisterer, Michael; Usoskin, Alexander; Stromer, Jan; Holzapfel, Bernhard; Schultz, Ludwig; Huhne, Ruben (2015). "Thick High Jc YBCO Films on ABAD–YSZ Templates".IEEE Transactions on Applied Superconductivity.25 (3): 1.Bibcode:2015ITAS...2578533P.doi:10.1109/TASC.2014.2378533.S2CID 30199901.
  30. ^Selvamanickam, V., Gharahcheshmeh, M. H., Xu, A., Zhang, Y., & Galstyan, E. (2015). "Critical current density above 15 MA cm−2 at 30 K, 3 T in 2.2 μm thick heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes".Superconductor Science and Technology.28 (7): 072002.Bibcode:2015SuScT..28g2002S.doi:10.1088/0953-2048/28/7/072002.S2CID 123093286.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^Molodyk, A.; Samoilenkov, S.; Markelov, A.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Gaifullin, M.; Mankevich, A.; Vavilov, A.; Sorbom, B.; Cheng, J. (January 22, 2021)."Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion".Scientific Reports.11 (1): 2084.doi:10.1038/s41598-021-81559-z.ISSN 2045-2322.PMC 7822827.PMID 33483553.
  32. ^Stangl, A.; Palau, A.; Deutscher, G.; Obradors, X.; Puig, T. (April 14, 2021)."Ultra-high critical current densities of superconducting YBa2Cu3O7-δ thin films in the overdoped state".Scientific Reports.11 (1): 8176.arXiv:2009.03366.Bibcode:2021NatSR..11.8176S.doi:10.1038/s41598-021-87639-4.ISSN 2045-2322.PMC 8047038.PMID 33854183.
  33. ^ Prusseit, W. (2005). Methods of HTS Deposition: Thermal Evaporation. In: Goyal, A. (eds) Second-Generation HTS Conductors. Springer, Boston, MA.https://doi.org/10.1007/0-387-25839-6_6.
  34. ^ Prusseit, W. (2005). Methods of HTS Deposition: Thermal Evaporation. In: Goyal, A. (eds) Second-Generation HTS Conductors. Springer, Boston, MA.https://doi.org/10.1007/0-387-25839-6_6.
  35. ^ Christen, H.M. (2005). Pulsed Laser Deposition of YBa2Cu2O7−δ for Coated Conductor Applications: Current Status and Cost Issues. In: Goyal, A. (eds) Second-Generation HTS Conductors. Springer, Boston, MA.https://doi.org/10.1007/0-387-25839-6_5.
Theories
Characteristic parameters
Phenomena
Classification
By magnetic response
By explanation
By critical temperature
By composition
Technological applications
List of superconductors
Retrieved from "https://en.wikipedia.org/w/index.php?title=Superconducting_wire&oldid=1278819547"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp