Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Strength (mathematical logic)

From Wikipedia, the free encyclopedia
Concept in model theory

The relativestrength of two systems offormal logic can be defined viamodel theory. Specifically, a logicα{\displaystyle \alpha } is said to be as strong as a logicβ{\displaystyle \beta } if everyelementary class inβ{\displaystyle \beta } is an elementary class inα{\displaystyle \alpha }.[1]

See also

[edit]

References

[edit]
  1. ^Heinz-Dieter EbbinghausExtended logics: the general framework inK. J. Barwise andS. Feferman, editors,Model-theoretic logics, 1985ISBN 0-387-90936-2 page 43
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types ofsets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
Stub icon

Thismathematical logic-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Strength_(mathematical_logic)&oldid=1294787021"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp