Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Stirling numbers of the first kind

From Wikipedia, the free encyclopedia
Count of permutations by cycles

Inmathematics, especially incombinatorics,Stirling numbers of the first kind arise in the study of permutations. In particular, the unsigned Stirling numbers of the first kind countpermutations according to their number ofcycles (countingfixed points as cycles of length one).[1]

The Stirling numbers of the first andsecond kind can be understood as inverses of one another when viewed astriangular matrices. This article is devoted to specifics of Stirling numbers of the first kind. Identities linking the two kinds appear in the article onStirling numbers.

Definitions

[edit]

Definition by algebra

[edit]

The Stirling numbers of the first kind are the coefficientss(n,k){\displaystyle s(n,k)} in the expansion of thefalling factorial

(x)n=x(x1)(x2)(xn+1){\displaystyle (x)_{n}=x(x-1)(x-2)\cdots (x-n+1)}

into powers of the variablex{\displaystyle x}:

(x)n=k=0ns(n,k)xk,{\displaystyle (x)_{n}=\sum _{k=0}^{n}s(n,k)x^{k},}

For example,(x)3=x(x1)(x2)=x33x2+2x{\displaystyle (x)_{3}=x(x-1)(x-2)=x^{3}-3x^{2}+2x}, leading to the valuess(3,3)=1{\displaystyle s(3,3)=1},s(3,2)=3{\displaystyle s(3,2)=-3}, ands(3,1)=2{\displaystyle s(3,1)=2}.

The unsigned Stirling numbers may also be defined algebraically as the coefficients of therising factorial:

xn¯=x(x+1)(x+n1)=k=0n[nk]xk{\displaystyle x^{\overline {n}}=x(x+1)\cdots (x+n-1)=\sum _{k=0}^{n}\left[{n \atop k}\right]x^{k}}.

The notations used on this page for Stirling numbers are not universal, and may conflict with notations in other sources; the square bracket notation[nk]{\displaystyle \left[{n \atop k}\right]} is also common notation for theGaussian coefficients.[2]

Definition by permutation

[edit]

Subsequently, it was discovered that the absolute values|s(n,k)|{\displaystyle |s(n,k)|} of these numbers are equal to the number ofpermutations of certain kinds. These absolute values, which are known as unsigned Stirling numbers of the first kind, are often denotedc(n,k){\displaystyle c(n,k)} or[nk]{\displaystyle \left[{n \atop k}\right]}. They may be defined directly to be the number ofpermutations ofn{\displaystyle n} elements withk{\displaystyle k} disjointcycles.[1]

For example, of the3!=6{\displaystyle 3!=6} permutations of three elements, there is one permutation with three cycles (theidentity permutation, given inone-line notation by123{\displaystyle 123} or incycle notation by(1)(2)(3){\displaystyle (1)(2)(3)}), three permutations with two cycles (132=(1)(23){\displaystyle 132=(1)(23)},213=(12)(3){\displaystyle 213=(12)(3)}, and321=(13)(2){\displaystyle 321=(13)(2)}) and two permutations with one cycle (312=(132){\displaystyle 312=(132)} and231=(123){\displaystyle 231=(123)}). Thus[33]=1{\displaystyle \left[{3 \atop 3}\right]=1},[32]=3,{\displaystyle \left[{3 \atop 2}\right]=3,} and[31]=2{\displaystyle \left[{3 \atop 1}\right]=2}. These can be seen to agree with the previous algebraic calculations ofs(n,k){\displaystyle s(n,k)} forn=3{\displaystyle n=3}.

s(4,2)=11

For another example, the image at right shows that[42]=11{\displaystyle \left[{4 \atop 2}\right]=11}: thesymmetric group on 4 objects has 3 permutations of the form

()(){\displaystyle (\bullet \bullet )(\bullet \bullet )} (having 2 orbits, each of size 2),

and 8 permutations of the form

()(){\displaystyle (\bullet \bullet \bullet )(\bullet )} (having 1 orbit of size 3 and 1 orbit of size 1).

These numbers can be calculated by considering the orbits asconjugacy classes.Alfréd Rényi observed that the unsigned Stirling number of the first kind[nk]{\displaystyle \left[{n \atop k}\right]} also counts the number of permutations of sizen{\displaystyle n} withk{\displaystyle k} left-to-right maxima.[3]

Signs

[edit]

The signs of the signed Stirling numbers of the first kind depend only on the parity ofnk.

s(n,k)=(1)nk[nk].{\displaystyle s(n,k)=(-1)^{n-k}\left[{n \atop k}\right].}

Recurrence relation

[edit]

The unsigned Stirling numbers of the first kind follow therecurrence relation[n+1k]=n[nk]+[nk1]{\displaystyle \left[{n+1 \atop k}\right]=n\left[{n \atop k}\right]+\left[{n \atop k-1}\right]}fork>0{\displaystyle k>0}, with the boundary conditions[00]=1and[n0]=[0n]=0{\displaystyle \left[{0 \atop 0}\right]=1\quad {\mbox{and}}\quad \left[{n \atop 0}\right]=\left[{0 \atop n}\right]=0}forn>0{\displaystyle n>0}.[2] It follows immediately that the signed Stirling numbers of the first kind satisfy the recurrences(n+1,k)=ns(n,k)+s(n,k1){\displaystyle s(n+1,k)=-n\cdot s(n,k)+s(n,k-1)}with the same base cases.

Algebraic proof

We prove the recurrence relation using the definition of Stirling numbers in terms of rising factorials. Distributing the last term of the product, we have

xn+1¯=x(x+1)(x+n1)(x+n)=nxn¯+xxn¯.{\displaystyle x^{\overline {n+1}}=x(x+1)\cdots (x+n-1)(x+n)=n\cdot x^{\overline {n}}+x\cdot x^{\overline {n}}.}

The coefficient ofxk{\displaystyle x^{k}} on the left-hand side of this equation is[n+1k]{\displaystyle \left[{n+1 \atop k}\right]}. The coefficient ofxk{\displaystyle x^{k}} innxn¯{\displaystyle n\cdot x^{\overline {n}}} isn[nk]{\displaystyle n\cdot \left[{n \atop k}\right]}, while the coefficient ofxk{\displaystyle x^{k}} inxxn¯{\displaystyle x\cdot x^{\overline {n}}} is[nk1]{\displaystyle \left[{n \atop k-1}\right]}. Since the two sides are equal as polynomials, the coefficients ofxk{\displaystyle x^{k}} on both sides must be equal, and the result follows.

Combinatorial proof

We prove the recurrence relation using the definition of Stirling numbers in terms of permutations with a given number of cycles (or equivalently,orbits).

Consider forming a permutation ofn+1{\displaystyle n+1} objects from a permutation ofn{\displaystyle n} objects by adding a distinguished object. There are exactly two ways in which this can be accomplished. We could do this by forming asingleton cycle, i.e., leaving the extra object alone. This increases the number of cycles by 1 and so accounts for the[nk1]{\displaystyle \left[{n \atop k-1}\right]} term in the recurrence formula. We could also insert the new object into one of the existing cycles. Consider an arbitrary permutation ofn{\displaystyle n} objects withk{\displaystyle k} cycles, and label the objectsa1,,an{\displaystyle a_{1},\dots ,a_{n}}, so that the permutation is represented by

(a1aj1)(aj1+1aj2)(ajk1+1an)k cycles.{\displaystyle \displaystyle \underbrace {(a_{1}\ldots a_{j_{1}})(a_{j_{1}+1}\ldots a_{j_{2}})\ldots (a_{j_{k-1}+1}\ldots a_{n})} _{k\ \mathrm {cycles} }.}

To form a new permutation ofn+1{\displaystyle n+1} objects andk{\displaystyle k} cycles one must insert the new object into this array. There aren{\displaystyle n} ways to perform this insertion, inserting the new object immediately following any of theai{\displaystyle a_{i}} already present. This explains then[nk]{\displaystyle n\left[{n \atop k}\right]} term of the recurrence relation. These two cases include all possibilities, so the recurrence relation follows.

Table of values

[edit]

Below is a table of unsigned values for the Stirling numbers of the first kind, similar in form toPascal's triangle. These values are easy to generate using the recurrence relation in the previous section.

k
n
012345678910
010
1010
20110
302310
40611610
502450351010
60120274225851510
70720176416247351752110
8050401306813132676919603222810
9040320109584118124672842244945365463610
10036288010265761172700723680269325632739450870451

Properties

[edit]

Simple identities

[edit]

Using theKronecker delta one has

[n0]=δn0=δn[0k]=0,k>0;[nk]=0,k>n[n1]=(n1)![nn]=1[nn1]=(n2)[nn2]=3n14(n3)[nn3]=(n2)(n4){\displaystyle {\begin{aligned}\left[{n \atop 0}\right]&=\delta _{n0}=\delta _{n}\\\left[{0 \atop k}\right]&=0,k>0;&&\left[{n \atop k}\right]=0,k>n\\\left[{n \atop 1}\right]&=(n-1)!\\\left[{n \atop n}\right]&=1\\\left[{n \atop n-1}\right]&={n \choose 2}\\\left[{n \atop n-2}\right]&={\frac {3n-1}{4}}{n \choose 3}\\\left[{n \atop n-3}\right]&={n \choose 2}{n \choose 4}\\\end{aligned}}}

Similar relationships involving the Stirling numbers hold for theBernoulli polynomials. Many relations for the Stirling numbers shadow similar relations on thebinomial coefficients. The study of these 'shadow relationships' is termedumbral calculus and culminates in the theory ofSheffer sequences. Generalizations of theStirling numbers of both kinds to arbitrary complex-valued inputs may be extended through the relations of these triangles to theStirling convolution polynomials.[4]

Combinatorial proofs

These identities may be derived by enumerating permutations directly.For example, a permutation ofn elements withn − 3 cycles must have one of the following forms:

  • n − 6 fixed points and three two-cycles
  • n − 5 fixed points, a three-cycle and a two-cycle, or
  • n − 4 fixed points and a four-cycle.

The three types may be enumerated as follows:

Sum the three contributions to obtain(n6)(62,2,2)16+(n5)(53)×2+(n4)×6=(n2)(n4).{\displaystyle {n \choose 6}{6 \choose 2,2,2}{\frac {1}{6}}+{n \choose 5}{5 \choose 3}\times 2+{n \choose 4}\times 6={n \choose 2}{n \choose 4}.}

Note that all the combinatorial proofs above use either binomials or multinomials ofn{\displaystyle n}.

Therefore ifp{\displaystyle p} is prime, then:

p |[pk]{\displaystyle p\ |\left[{p \atop k}\right]} for1<k<p{\displaystyle 1<k<p}.

Expansions for fixedk

[edit]

Since the Stirling numbers are the coefficients of a polynomial with roots 0, 1, ...,n − 1, one has byVieta's formulas that

[nnk]=0i1<<ik<ni1i2ik.{\displaystyle \left[{\begin{matrix}n\\n-k\end{matrix}}\right]=\sum _{0\leq i_{1}<\ldots <i_{k}<n}i_{1}i_{2}\cdots i_{k}.}

In other words, the Stirling numbers of the first kind are given byelementary symmetric polynomials evaluated at 0, 1, ...,n − 1.[5] In this form, the simple identities given above take the form

[nn1]=i=0n1i=(n2),{\displaystyle \left[{\begin{matrix}n\\n-1\end{matrix}}\right]=\sum _{i=0}^{n-1}i={\binom {n}{2}},}[nn2]=i=0n1j=0i1ij=3n14(n3),{\displaystyle \left[{\begin{matrix}n\\n-2\end{matrix}}\right]=\sum _{i=0}^{n-1}\sum _{j=0}^{i-1}ij={\frac {3n-1}{4}}{\binom {n}{3}},}[nn3]=i=0n1j=0i1k=0j1ijk=(n2)(n4),{\displaystyle \left[{\begin{matrix}n\\n-3\end{matrix}}\right]=\sum _{i=0}^{n-1}\sum _{j=0}^{i-1}\sum _{k=0}^{j-1}ijk={\binom {n}{2}}{\binom {n}{4}},}and so on.

One may produce alternative forms for the Stirling numbers of the first kind with a similar approach preceded by some algebraic manipulation: since

(x+1)(x+2)(x+n1)=(n1)!(x+1)(x2+1)(xn1+1),{\displaystyle (x+1)(x+2)\cdots (x+n-1)=(n-1)!\cdot (x+1)\left({\frac {x}{2}}+1\right)\cdots \left({\frac {x}{n-1}}+1\right),}

it follows fromNewton's formulas that one can expand the Stirling numbers of the first kind in terms ofgeneralized harmonic numbers. This yields identities like

[n2]=(n1)!Hn1[n3]=(n1)!2(Hn12Hn1,2)[n4]=(n1)!6(Hn1(Hn123Hn1,2)+2Hn1,3){\displaystyle {\begin{aligned}\left[{n \atop 2}\right]&=(n-1)!\;H_{n-1}\\\left[{n \atop 3}\right]&={\frac {(n-1)!}{2}}\left(H_{n-1}^{2}-H_{n-1,2}\right)\\\left[{n \atop 4}\right]&={\frac {(n-1)!}{6}}\left(H_{n-1}\left(H_{n-1}^{2}-3H_{n-1,2}\right)+2H_{n-1,3}\right)\\\end{aligned}}}

whereHn is theharmonic numberHn=11+12++1n{\displaystyle H_{n}={\frac {1}{1}}+{\frac {1}{2}}+\ldots +{\frac {1}{n}}} andHn,m =Hn(m) is the generalized harmonic numberHn(m)=Hn,m=11m+12m++1nm.{\displaystyle H_{n}^{(m)}=H_{n,m}={\frac {1}{1^{m}}}+{\frac {1}{2^{m}}}+\ldots +{\frac {1}{n^{m}}}.}

These relations can be generalized to give1(n1)![nk+1]=i1=1n1i2=i1+1n1ik=ik1+1n11i1i2ik=w(n,k)k!{\displaystyle {\frac {1}{(n-1)!}}\left[{\begin{matrix}n\\k+1\end{matrix}}\right]=\sum _{i_{1}=1}^{n-1}\sum _{i_{2}=i_{1}+1}^{n-1}\cdots \sum _{i_{k}=i_{k-1}+1}^{n-1}{\frac {1}{i_{1}i_{2}\cdots i_{k}}}={\frac {w(n,k)}{k!}}}wherew(n,m) is defined recursively in terms of the generalized harmonic numbers byw(n,m)=δm,0+k=0m1(1m)kHn1(k+1)w(n,m1k).{\displaystyle w(n,m)=\delta _{m,0}+\sum _{k=0}^{m-1}(1-m)_{k}H_{n-1}^{(k+1)}w(n,m-1-k).} (Hereδ is theKronecker delta function and(m)k{\displaystyle (m)_{k}} is thePochhammer symbol.)[6]

For fixedn0{\displaystyle n\geq 0} these weighted harmonic number expansions are generated by the generating function

1n![n+1k]=[xk]exp(m1(1)m1Hn(m)mxm),{\displaystyle {\frac {1}{n!}}\left[{\begin{matrix}n+1\\k\end{matrix}}\right]=[x^{k}]\exp \left(\sum _{m\geq 1}{\frac {(-1)^{m-1}H_{n}^{(m)}}{m}}x^{m}\right),}

where the notation[xk]{\displaystyle [x^{k}]} means extraction of the coefficient ofxk{\displaystyle x^{k}} from the followingformal power series (see the non-exponentialBell polynomials and section 3 of[7]).

More generally, sums related to these weighted harmonic number expansions of the Stirling numbers of the first kind can be defined through generalized zeta seriestransforms of generating functions.[8][9]

One can also "invert" the relations for these Stirling numbers given in terms of thek{\displaystyle k}-order harmonic numbers to write the integer-order generalized harmonic numbers in terms of weighted sums of terms involving the Stirling numbers of the first kind. For example, whenk=2,3{\displaystyle k=2,3} the second-order and third-order harmonic numbers are given by

(n!)2Hn(2)=[n+12]22[n+11][n+13]{\displaystyle (n!)^{2}\cdot H_{n}^{(2)}=\left[{\begin{matrix}n+1\\2\end{matrix}}\right]^{2}-2\left[{\begin{matrix}n+1\\1\end{matrix}}\right]\left[{\begin{matrix}n+1\\3\end{matrix}}\right]}

(n!)3Hn(3)=[n+12]33[n+11][n+12][n+13]+3[n+11]2[n+14].{\displaystyle (n!)^{3}\cdot H_{n}^{(3)}=\left[{\begin{matrix}n+1\\2\end{matrix}}\right]^{3}-3\left[{\begin{matrix}n+1\\1\end{matrix}}\right]\left[{\begin{matrix}n+1\\2\end{matrix}}\right]\left[{\begin{matrix}n+1\\3\end{matrix}}\right]+3\left[{\begin{matrix}n+1\\1\end{matrix}}\right]^{2}\left[{\begin{matrix}n+1\\4\end{matrix}}\right].}

More generally, one can invert theBell polynomial generating function for the Stirling numbers expanded in terms of them{\displaystyle m}-orderharmonic numbers to obtain that for integersm2{\displaystyle m\geq 2}

Hn(m)=m×[xm]log(1+k1[n+1k+1](x)kn!).{\displaystyle H_{n}^{(m)}=-m\times [x^{m}]\log \left(1+\sum _{k\geq 1}\left[{\begin{matrix}n+1\\k+1\end{matrix}}\right]{\frac {(-x)^{k}}{n!}}\right).}

Finite sums

[edit]

Since permutations are partitioned by number of cycles, one has

k=0n[nk]=n!{\displaystyle \sum _{k=0}^{n}\left[{n \atop k}\right]=n!}

The identities

k=0n[nk]uk=n!(n+u1u1),u>0{\displaystyle \sum _{k=0}^{n}\left[{n \atop k}\right]u^{k}=n!{\binom {n+u-1}{u-1}},\,u>0}

and

j=kn[nj](jk)=[n+1k+1]{\displaystyle \sum _{j=k}^{n}{\left[{n \atop j}\right]{\binom {j}{k}}}=\left[{n+1 \atop k+1}\right]}

can be proved by the techniques atStirling numbers and exponential generating functions#Stirling numbers of the first kind andBinomial coefficient#Ordinary generating functions.

The table in section 6.1 ofConcrete Mathematics provides a plethora of generalized forms of finite sums involving the Stirling numbers. Several particular finite sums relevant to this article include

[nm]=k=mn[n+1k+1](km)(1)mk[n+1m+1]=k=mn[km]n!k![m+n+1m]=k=0m(n+k)[n+kk][nl+m](l+ml)=k[kl][nkm](nk).{\displaystyle {\begin{aligned}\left[{n \atop m}\right]&=\sum _{k=m}^{n}\left[{n+1 \atop k+1}\right]{\binom {k}{m}}(-1)^{m-k}\\\left[{n+1 \atop m+1}\right]&=\sum _{k=m}^{n}\left[{k \atop m}\right]{\frac {n!}{k!}}\\\left[{m+n+1 \atop m}\right]&=\sum _{k=0}^{m}(n+k)\left[{n+k \atop k}\right]\\\left[{n \atop l+m}\right]{\binom {l+m}{l}}&=\sum _{k}\left[{k \atop l}\right]\left[{n-k \atop m}\right]{\binom {n}{k}}.\end{aligned}}}

Additionally, if we define thesecond-order Eulerian numbers by the triangular recurrence relation[10]

nk=(k+1)n1k+(2n1k)n1k1,{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle +(2n-1-k)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle ,}

we arrive at the following identity related to the form of theStirling convolution polynomials which can be employed to generalize both Stirling number triangles to arbitrary real, or complex-valued, values of the inputx{\displaystyle x}:

[xxn]=k=0nnk(x+k2n).{\displaystyle \left[{x \atop x-n}\right]=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle {\binom {x+k}{2n}}.}

Particular expansions of the previous identity lead to the following identities expanding the Stirling numbers of the first kind for the first few small values ofn:=1,2,3{\displaystyle n:=1,2,3}:

[xx1]=(x2)[xx2]=(x4)+2(x+14)[xx3]=(x6)+8(x+16)+6(x+26).{\displaystyle {\begin{aligned}\left[{\begin{matrix}x\\x-1\end{matrix}}\right]&={\binom {x}{2}}\\\left[{\begin{matrix}x\\x-2\end{matrix}}\right]&={\binom {x}{4}}+2{\binom {x+1}{4}}\\\left[{\begin{matrix}x\\x-3\end{matrix}}\right]&={\binom {x}{6}}+8{\binom {x+1}{6}}+6{\binom {x+2}{6}}.\end{aligned}}}

Software tools for working with finite sums involvingStirling numbers andEulerian numbers are provided by theRISC Stirling.m package utilities inMathematica. Other software packages forguessing formulas for sequences (and polynomial sequence sums) involving Stirling numbers and other special triangles is available for bothMathematica andSagehere andhere, respectively.[11]

Congruences

[edit]

The following congruence identity may be proved via agenerating function-based approach:[12]

[nm](n/2mn/2)=[xm](xn/2(x+1)n/2)(mod2),{\displaystyle {\begin{aligned}\left[{\begin{matrix}n\\m\end{matrix}}\right]&\equiv {\binom {\lfloor n/2\rfloor }{m-\lceil n/2\rceil }}=[x^{m}]\left(x^{\lceil n/2\rceil }(x+1)^{\lfloor n/2\rfloor }\right)&&{\pmod {2}},\end{aligned}}}

More recent results providingJacobi-type J-fractions that generate thesingle factorial function andgeneralized factorial-related products lead to other new congruence results for the Stirling numbers of the first kind.[13]For example, working modulo2{\displaystyle 2} we can prove that

[n1]2n4[n2]+[n=1](mod2)[n2]32n16(n1)[n3]+[n=2](mod2)[n3]2n7(9n20)(n1)[n4]+[n=3](mod2)[n4]2n9(3n10)(3n7)(n1)[n5]+[n=4](mod2){\displaystyle {\begin{aligned}\left[{\begin{matrix}n\\1\end{matrix}}\right]&\equiv {\frac {2^{n}}{4}}[n\geq 2]+[n=1]&&{\pmod {2}}\\\left[{\begin{matrix}n\\2\end{matrix}}\right]&\equiv {\frac {3\cdot 2^{n}}{16}}(n-1)[n\geq 3]+[n=2]&&{\pmod {2}}\\\left[{\begin{matrix}n\\3\end{matrix}}\right]&\equiv 2^{n-7}(9n-20)(n-1)[n\geq 4]+[n=3]&&{\pmod {2}}\\\left[{\begin{matrix}n\\4\end{matrix}}\right]&\equiv 2^{n-9}(3n-10)(3n-7)(n-1)[n\geq 5]+[n=4]&&{\pmod {2}}\end{aligned}}}

Where[b]{\displaystyle [b]} is theIverson bracket.

and working modulo3{\displaystyle 3} we can similarly prove that

[nm][xm](xn/3(x+1)(n1)/3(x+2)n/3(mod3)k=0m((n1)/3k)(n/3mkn/3)2n/3+n/3m+k(mod3){\displaystyle {\begin{aligned}\left[{\begin{matrix}n\\m\end{matrix}}\right]&\equiv [x^{m}](x^{\lceil n/3\rceil }(x+1)^{\lceil (n-1)/3\rceil }(x+2)^{\lfloor n/3\rfloor }&&{\pmod {3}}\\&\equiv \sum _{k=0}^{m}{\binom {\lceil (n-1)/3\rceil }{k}}{\binom {\lfloor n/3\rfloor }{m-k-\lfloor n/3\rfloor }}2^{\lceil n/3\rceil +\lfloor n/3\rfloor -m+k}&&{\pmod {3}}\end{aligned}}}

More generally, for fixed integersh3{\displaystyle h\geq 3} if we define the ordered roots

(ωh,i)i=1h1:={ωj:i=0h1(h1i)h!(i+1)!(ωj)i=0, 1j<h},{\displaystyle \left(\omega _{h,i}\right)_{i=1}^{h-1}:=\left\{\omega _{j}:\sum _{i=0}^{h-1}{\binom {h-1}{i}}{\frac {h!}{(i+1)!}}(-\omega _{j})^{i}=0,\ 1\leq j<h\right\},}

then we may expand congruences for these Stirling numbers defined as the coefficients

[nm]=[Rm]R(R+1)(R+n1),{\displaystyle \left[{\begin{matrix}n\\m\end{matrix}}\right]=[R^{m}]R(R+1)\cdots (R+n-1),}

in the following form where the functions,ph,i[m](n){\displaystyle p_{h,i}^{[m]}(n)}, denote fixed polynomials of degreem{\displaystyle m} inn{\displaystyle n} for eachh{\displaystyle h},m{\displaystyle m}, andi{\displaystyle i}:

[nm]=(i=0h1ph,i[m](n)×ωh,in)[n>m]+[n=m](modh),{\displaystyle \left[{\begin{matrix}n\\m\end{matrix}}\right]=\left(\sum _{i=0}^{h-1}p_{h,i}^{[m]}(n)\times \omega _{h,i}^{n}\right)[n>m]+[n=m]\qquad {\pmod {h}},}

Section 6.2 of the reference cited above provides more explicit expansions related to these congruences for ther{\displaystyle r}-orderharmonic numbers and for thegeneralized factorial products,pn(α,R):=R(R+α)(R+(n1)α){\displaystyle p_{n}(\alpha ,R):=R(R+\alpha )\cdots (R+(n-1)\alpha )}.

Generating functions

[edit]

A variety of identities may be derived by manipulating thegenerating function (seechange of basis):

H(z,u)=(1+z)u=n=0(un)zn=n=0znn!k=0ns(n,k)uk=k=0ukn=kznn!s(n,k).{\displaystyle H(z,u)=(1+z)^{u}=\sum _{n=0}^{\infty }{u \choose n}z^{n}=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}\sum _{k=0}^{n}s(n,k)u^{k}=\sum _{k=0}^{\infty }u^{k}\sum _{n=k}^{\infty }{\frac {z^{n}}{n!}}s(n,k).}

Using the equality

(1+z)u=eulog(1+z)=k=0(log(1+z))kukk!,{\displaystyle (1+z)^{u}=e^{u\log(1+z)}=\sum _{k=0}^{\infty }(\log(1+z))^{k}{\frac {u^{k}}{k!}},}

it follows that

n=ks(n,k)znn!=(log(1+z))kk!{\displaystyle \sum _{n=k}^{\infty }s(n,k){\frac {z^{n}}{n!}}={\frac {(\log(1+z))^{k}}{k!}}}

and

n=k[nk]znn!=(log(1z))kk!.{\displaystyle \sum _{n=k}^{\infty }\left[{n \atop k}\right]{\frac {z^{n}}{n!}}={\frac {(-\log(1-z))^{k}}{k!}}.}[1]

This identity is valid forformal power series, and the sumconverges in thecomplex plane for |z| < 1.

Other identities arise by exchanging the order of summation, taking derivatives, making substitutions forz oru, etc. For example, we may derive:[14]

logm(1+z)1+z=m!k=0s(k+1,m+1)zkk!,m=1,2,3,|z|<1{\displaystyle {\frac {\log ^{m}(1+z)}{1+z}}=m!\sum _{k=0}^{\infty }{\frac {s(k+1,m+1)\,z^{k}}{k!}},\qquad m=1,2,3,\ldots \quad |z|<1}

or

n=i[ni]n(n!)=ζ(i+1),i=1,2,3,{\displaystyle \sum _{n=i}^{\infty }{\frac {\left[{n \atop i}\right]}{n\,(n!)}}=\zeta (i+1),\qquad i=1,2,3,\ldots }

and

n=i[ni]n(v)n=ζ(i+1,v),i=1,2,3,(v)>0{\displaystyle \sum _{n=i}^{\infty }{\frac {\left[{n \atop i}\right]}{n\,(v)_{n}}}=\zeta (i+1,v),\qquad i=1,2,3,\ldots \quad \Re (v)>0}

whereζ(k){\displaystyle \zeta (k)} andζ(k,v){\displaystyle \zeta (k,v)} are theRiemann zeta function and theHurwitz zeta function respectively, and even evaluate this integral

01logz(1x)xkdx=(1)zΓ(z+1)(k1)!r=1k1s(k1,r)m=0r(rm)(k2)rmζ(z+1m),(z)>k1,k=3,4,5,{\displaystyle \int _{0}^{1}{\frac {\log ^{z}(1-x)}{x^{k}}}\,dx={\frac {(-1)^{z}\Gamma (z+1)}{(k-1)!}}\sum _{r=1}^{k-1}s(k-1,r)\sum _{m=0}^{r}{\binom {r}{m}}(k-2)^{r-m}\zeta (z+1-m),\qquad \Re (z)>k-1,\quad k=3,4,5,\ldots }

whereΓ(z){\displaystyle \Gamma (z)} is thegamma function. There also exist more complicated expressions for the zeta-functions involving the Stirling numbers. One, for example, has

ζ(s,v)=k!(sk)kn=01(n+k)![n+kn]l=0n+k1(1)l(n+k1l)(l+v)ks,k=1,2,3,{\displaystyle \zeta (s,v)={\frac {k!}{(s-k)_{k}}}\sum _{n=0}^{\infty }{\frac {1}{(n+k)!}}\left[{n+k \atop n}\right]\sum _{l=0}^{n+k-1}\!(-1)^{l}{\binom {n+k-1}{l}}(l+v)^{k-s},\quad k=1,2,3,\ldots }

This series generalizesHasse's series for theHurwitz zeta-function (we obtain Hasse's series by settingk=1).[15][16]

Asymptotics

[edit]

The next estimate given in terms of theEuler gamma constant applies:[17]

[n+1k+1]nn!k!(γ+lnn)k,  uniformly for k=o(lnn).{\displaystyle \left[{\begin{matrix}n+1\\k+1\end{matrix}}\right]{\underset {n\to \infty }{\sim }}{\frac {n!}{k!}}\left(\gamma +\ln n\right)^{k},\ {\text{ uniformly for }}k=o(\ln n).}

For fixedn{\displaystyle n} we have the following estimate :

[n+kk]kk2n2nn!.{\displaystyle \left[{\begin{matrix}n+k\\k\end{matrix}}\right]{\underset {k\to \infty }{\sim }}{\frac {k^{2n}}{2^{n}n!}}.}

Explicit formula

[edit]

No one-sum formula for Stirling numbers of the first kind is currently known. A two-sum formula can be obtained using one of thesymmetric formulae for Stirling numbers in conjunction with the explicit formula forStirling numbers of the second kind.

[nk]=j=n2nk(j1k1)(2nkj)m=0jn(1)m+nkmjkm!(jnm)!{\displaystyle \left[{n \atop k}\right]=\sum _{j=n}^{2n-k}{\binom {j-1}{k-1}}{\binom {2n-k}{j}}\sum _{m=0}^{j-n}{\frac {(-1)^{m+n-k}m^{j-k}}{m!(j-n-m)!}}}

As discussed earlier, byVieta's formulas, one get[nk]=0i1<<ink<ni1i2ink.{\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]=\sum _{0\leq i_{1}<\ldots <i_{n-k}<n}i_{1}i_{2}\cdots i_{n-k}.}The Stirling numbers(n,n-p) can be found from the formula[18]

s(n,np)=1(np1)!0k1,,kp:1pmkm=p(1)K(n+K1)!k1!k2!kp! 2!k13!k2(p+1)!kp,{\displaystyle {\begin{aligned}s(n,n-p)&={\frac {1}{(n-p-1)!}}\sum _{0\leq k_{1},\ldots ,k_{p}:\sum _{1}^{p}mk_{m}=p}(-1)^{K}{\frac {(n+K-1)!}{k_{1}!k_{2}!\cdots k_{p}!~2!^{k_{1}}3!^{k_{2}}\cdots (p+1)!^{k_{p}}}},\end{aligned}}}

whereK=k1++kp.{\displaystyle K=k_{1}+\cdots +k_{p}.} The sum is a sum over allpartitions ofp.

Another exact nested sum expansion for these Stirling numbers is computed byelementary symmetric polynomials corresponding to the coefficients inx{\displaystyle x} of a product of the form(1+c1x)(1+cn1x){\displaystyle (1+c_{1}x)\cdots (1+c_{n-1}x)}. In particular, we see that

[nk+1]=[xk](x+1)(x+2)(x+n1)=(n1)![xk](x+1)(x2+1)(xn1+1)=1i1<<ik<n(n1)!i1ik.{\displaystyle {\begin{aligned}\left[{n \atop k+1}\right]&=[x^{k}](x+1)(x+2)\cdots (x+n-1)=(n-1)!\cdot [x^{k}](x+1)\left({\frac {x}{2}}+1\right)\cdots \left({\frac {x}{n-1}}+1\right)\\&=\sum _{1\leq i_{1}<\cdots <i_{k}<n}{\frac {(n-1)!}{i_{1}\cdots i_{k}}}.\end{aligned}}}

Newton's identities combined with the above expansions may be used to give an alternate proof of the weighted expansions involving the generalizedharmonic numbers alreadynoted above.

Relations to natural logarithm function

[edit]

Thenthderivative of theμth power of thenatural logarithm involves the signed Stirling numbers of the first kind:

dn(lnx)μdxn=xnk=1nμk_s(n,nk+1)(lnx)μk,{\displaystyle {\operatorname {d} ^{n}\!(\ln x)^{\mu } \over \operatorname {d} \!x^{n}}=x^{-n}\sum _{k=1}^{n}\mu ^{\underline {k}}s(n,n-k+1)(\ln x)^{\mu -k},}

whereμi_{\displaystyle \mu ^{\underline {i}}} is thefalling factorial, ands(n,nk+1){\displaystyle s(n,n-k+1)} is the signed Stirling number.

It can be proved by usingmathematical induction.

Other formulas

[edit]

Stirling numbers of the first kind appear in the formula forGregory coefficients and in a finite sum identity involvingBell numbers[19]

n!Gn=l=0ns(n,l)l+1{\displaystyle n!G_{n}=\sum _{l=0}^{n}{\frac {s(n,l)}{l+1}}}

j=0n(nj)Bjknj=i=0k[ki]Bn+i(1)ki{\displaystyle \sum _{j=0}^{n}{\binom {n}{j}}B_{j}k^{n-j}=\sum _{i=0}^{k}\left[{k \atop i}\right]B_{n+i}(-1)^{k-i}}

Infinite series involving the finite sums with the Stirling numbers often lead to the special functions. For example[14][20]

lnΓ(z)=(z12)lnzz+12ln2π+1πn=11nn!l=0n/2(1)l(2l)!(2πz)2l+1[n2l+1]{\displaystyle \ln \Gamma (z)=\left(z-{\frac {1}{2}}\right)\!\ln z-z+{\frac {1}{2}}\ln 2\pi +{\frac {1}{\pi }}\sum _{n=1}^{\infty }{\frac {1}{n\cdot n!}}\!\sum _{l=0}^{\lfloor n/2\rfloor }\!{\frac {(-1)^{l}(2l)!}{(2\pi z)^{2l+1}}}\left[{n \atop 2l+1}\right]}

and

Ψ(z)=lnz12z1πzn=11nn!l=0n/2(1)l(2l+1)!(2πz)2l+1[n2l+1]{\displaystyle \Psi (z)=\ln z-{\frac {1}{2z}}-{\frac {1}{\pi z}}\sum _{n=1}^{\infty }{\frac {1}{n\cdot n!}}\!\sum _{l=0}^{\lfloor n/2\rfloor }\!{\frac {(-1)^{l}(2l+1)!}{(2\pi z)^{2l+1}}}\left[{n \atop 2l+1}\right]}

or even

γm=12δm,0+(1)mm!πn=11nn!k=0n/2(1)k(2π)2k+1[2k+2m+1][n2k+1]{\displaystyle \gamma _{m}={\frac {1}{2}}\delta _{m,0}+{\frac {(-1)^{m}m!}{\pi }}\!\sum _{n=1}^{\infty }{\frac {1}{n\cdot n!}}\!\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {(-1)^{k}}{(2\pi )^{2k+1}}}\left[{2k+2 \atop m+1}\right]\left[{n \atop 2k+1}\right]\,}

whereγm are theStieltjes constants andδm,0 represents theKronecker delta function.

Notice that this last identity immediately implies relations between thepolylogarithm functions, the Stirling number exponentialgenerating functions given above, and the Stirling-number-based power series for the generalizedNielsen polylogarithm functions.

Generalizations

[edit]

There are many notions ofgeneralized Stirling numbers that may be defined (depending on application) in a number of differing combinatorial contexts. In so much as the Stirling numbers of the first kind correspond to the coefficients of the distinct polynomial expansions of thesingle factorial function,n!=n(n1)(n2)21{\displaystyle n!=n(n-1)(n-2)\cdots 2\cdot 1}, we may extend this notion to define triangular recurrence relations for more general classes of products.

In particular, for any fixed arithmetic functionf:NC{\displaystyle f:\mathbb {N} \rightarrow \mathbb {C} } and symbolic parametersx,t{\displaystyle x,t}, related generalized factorial products of the form

(x)n,f,t:=k=1n1(x+f(k)tk){\displaystyle (x)_{n,f,t}:=\prod _{k=1}^{n-1}\left(x+{\frac {f(k)}{t^{k}}}\right)}

may be studied from the point of view of the classes of generalized Stirling numbers of the first kind defined by the following coefficients of the powers ofx{\displaystyle x} in the expansions of(x)n,f,t{\displaystyle (x)_{n,f,t}} and then by the next corresponding triangular recurrence relation:

[nk]f,t=[xk1](x)n,f,t=f(n1)t1n[n1k]f,t+[n1k1]f,t+δn,0δk,0.{\displaystyle {\begin{aligned}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{f,t}&=[x^{k-1}](x)_{n,f,t}\\&=f(n-1)t^{1-n}\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{f,t}+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{f,t}+\delta _{n,0}\delta _{k,0}.\end{aligned}}}

These coefficients satisfy a number of analogous properties to those for the Stirling numbers of the first kind as well as recurrence relations and functional equations related to thef-harmonic numbers,Fn(r)(t):=kntk/f(k)r{\displaystyle F_{n}^{(r)}(t):=\sum _{k\leq n}t^{k}/f(k)^{r}}.[21]

One special case of these bracketed coefficients corresponding tot1{\displaystyle t\equiv 1} allows us to expand the multiple factorial, ormultifactorial functions as polynomials inn{\displaystyle n}.[22]

TheStirling numbers of both kinds, thebinomial coefficients, and the first and second-orderEulerian numbers are all defined by special cases of a triangularsuper-recurrence of the form

|nk|=(αn+βk+γ)|n1k|+(αn+βk+γ)|n1k1|+δn,0δk,0,{\displaystyle \left|{\begin{matrix}n\\k\end{matrix}}\right|=(\alpha n+\beta k+\gamma )\left|{\begin{matrix}n-1\\k\end{matrix}}\right|+(\alpha ^{\prime }n+\beta ^{\prime }k+\gamma ^{\prime })\left|{\begin{matrix}n-1\\k-1\end{matrix}}\right|+\delta _{n,0}\delta _{k,0},}

for integersn,k0{\displaystyle n,k\geq 0} and where|nk|0{\displaystyle \left|{\begin{matrix}n\\k\end{matrix}}\right|\equiv 0} whenevern<0{\displaystyle n<0} ork<0{\displaystyle k<0}. In this sense, the form of the Stirling numbers of the first kind may also be generalized by this parameterized super-recurrence for fixed scalarsα,β,γ,α,β,γ{\displaystyle \alpha ,\beta ,\gamma ,\alpha ^{\prime },\beta ^{\prime },\gamma ^{\prime }} (not all zero).

See also

[edit]

References

[edit]
  1. ^abcWilf, Herbert S. (1990).Generatingfunctionology. San Diego, CA, USA: Academic Press. p. 73.ISBN 978-148324857-8.
  2. ^abKnuth, Donald E. (1992)."Two Notes on Notation".American Mathematical Monthly.99 (5):403–422.doi:10.2307/2325085.JSTOR 2325085.
  3. ^Rényi, Alfred (1962)."Théorie des éléments saillants d'une suite d'observations".Annales scientifiques de l'Université de Clermont. Mathématiques. Tome 8 (2):7–13.
  4. ^See section 6.2 and 6.5 ofConcrete Mathematics.
  5. ^Richard P. Stanley,Enumerative Combinatorics, volume 1 (2nd ed.). Page 34 of theonline version.
  6. ^Adamchik, Victor (1997)."On Stirling numbers and Euler sums".Journal of Computational and Applied Mathematics.79 (1):119–130.doi:10.1016/S0377-0427(96)00167-7.MR 1437973.
  7. ^Flajolet and Sedgewick (1995)."Mellin transforms and asymptotics: Finite differences and Rice's integrals"(PDF).Theoretical Computer Science.144 (1–2):101–124.doi:10.1016/0304-3975(94)00281-m.
  8. ^Schmidt, M. D. (30 October 2016). "Zeta Series Generating Function Transformations Related to Polylogarithm Functions and thek-Order Harmonic Numbers".arXiv:1610.09666 [math.CO].
  9. ^Schmidt, M. D. (3 November 2016). "Zeta Series Generating Function Transformations Related to Generalized Stirling Numbers and Partial Sums of the Hurwitz Zeta Function".arXiv:1611.00957 [math.CO].
  10. ^A table of the second-order Eulerian numbers and a synopsis of their properties is found in section 6.2 ofConcrete Mathematics. For example, we have thatknk=(2n1)(2n3)1=(2n1)!!{\displaystyle \sum _{k}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-1)(2n-3)\cdots 1=(2n-1)!!}. These numbers also have the following combinatorial interpretation: If we form all permutations of themultiset{1,1,2,2,,n,n}{\displaystyle \{1,1,2,2,\ldots ,n,n\}} with the property that all numbers between the two occurrences ofk{\displaystyle k} are greater thank{\displaystyle k} for1kn{\displaystyle 1\leq k\leq n}, thennk{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle } is the number of such permutations that havek{\displaystyle k} ascents.
  11. ^Schmidt, M. D. (2016). "A Computer Algebra Package for Polynomial Sequence Recognition".arXiv:1609.07301 [math.CO].
  12. ^Herbert Wilf,Generatingfunctionology, Section 4.6.
  13. ^Schmidt, M. D. (2017)."Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions".J. Integer Seq.20 (3).arXiv:1610.09691.
  14. ^abIa. V. Blagouchine (2016). "Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related toπ−1".Journal of Mathematical Analysis and Applications.442 (2):404–434.arXiv:1408.3902.doi:10.1016/j.jmaa.2016.04.032.S2CID 119661147.arXiv
  15. ^Blagouchine, Iaroslav V. (2018)."Three Notes on Ser's and Hasse's Representations for the Zeta-functions".INTEGERS: The Electronic Journal of Combinatorial Number Theory.18A:1–45.arXiv:1606.02044.Bibcode:2016arXiv160602044B.doi:10.5281/zenodo.10581385.
  16. ^See also some more interesting series representations and expansions mentioned in Connon's article:Connon, D. F. (2007). "Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers (Volume I)".arXiv:0710.4022 [math.HO]..
  17. ^These estimates are found in Section 26.8 of theNIST Handbook of Mathematical Functions.
  18. ^Malenfant, Jerome (2011). "Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers".arXiv:1103.1585 [math.NT].
  19. ^Komatsu, Takao; Pita-Ruiz, Claudio (2018)."Some formulas for Bell numbers".Filomat.32 (11):3881–3889.doi:10.2298/FIL1811881K.ISSN 0354-5180.
  20. ^Ia. V. Blagouchine (2016). "Expansions of generalized Euler's constants into the series of polynomials inπ−2 and into the formal enveloping series with rational coefficients only".Journal of Number Theory.158 (2):365–396.arXiv:1501.00740.doi:10.1016/j.jnt.2015.06.012.arXiv
  21. ^Schmidt, Maxie D. (2016). "Combinatorial Identities for Generalized Stirling Numbers Expandingf{\displaystyle f}-Factorial Functions and thef{\displaystyle f}-Harmonic Numbers".arXiv:1611.04708 [math.CO].
  22. ^Schmidt, Maxie D. (2010)."Generalized j-Factorial Functions, Polynomials, and Applications".J. Integer Seq.13.
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Stirling_numbers_of_the_first_kind&oldid=1335255437"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp