7-demicube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Steric 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Stericantic 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Steriruncic 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Steriruncicantic 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
| Orthogonal projections in D7Coxeter plane | ||
|---|---|---|
In seven-dimensionalgeometry, astericated 7-cube (or runcinated 7-demicube) is a convexuniform 7-polytope, being aruncination of the uniform7-demicube. There are 4 unique runcinations for the 7-demicube including truncation and cantellation.
| Steric 7-cube | |
|---|---|
| Type | uniform 7-polytope |
| Schläfli symbol | t0,3{3,34,1} h4{4,35} |
| Coxeter-Dynkin diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | 20160 |
| Vertices | 2240 |
| Vertex figure | |
| Coxeter groups | D7, [34,1,1] |
| Properties | convex |
TheCartesian coordinates for the vertices of a steric 7-cube centered at the origin are coordinate permutations:
with an odd number of plus signs.
| Coxeter plane | B7 | D7 | D6 |
|---|---|---|---|
| Graph | |||
| Dihedral symmetry | [14/2] | [12] | [10] |
| Coxeter plane | D5 | D4 | D3 |
| Graph | |||
| Dihedral symmetry | [8] | [6] | [4] |
| Coxeter plane | A5 | A3 | |
| Graph | |||
| Dihedral symmetry | [6] | [4] |
| Dimensional family of steric n-cubes | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| n | 5 | 6 | 7 | 8 | |||||||
| [1+,4,3n-2] = [3,3n-3,1] | [1+,4,33] = [3,32,1] | [1+,4,34] = [3,33,1] | [1+,4,35] = [3,34,1] | [1+,4,36] = [3,35,1] | |||||||
| Steric figure | |||||||||||
| Coxeter | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||||||
| Schläfli | h4{4,33} | h4{4,34} | h4{4,35} | h4{4,36} | |||||||
| Coxeter plane | B7 | D7 | D6 |
|---|---|---|---|
| Graph | |||
| Dihedral symmetry | [14/2] | [12] | [10] |
| Coxeter plane | D5 | D4 | D3 |
| Graph | |||
| Dihedral symmetry | [8] | [6] | [4] |
| Coxeter plane | A5 | A3 | |
| Graph | |||
| Dihedral symmetry | [6] | [4] |
| Coxeter plane | B7 | D7 | D6 |
|---|---|---|---|
| Graph | |||
| Dihedral symmetry | [14/2] | [12] | [10] |
| Coxeter plane | D5 | D4 | D3 |
| Graph | |||
| Dihedral symmetry | [8] | [6] | [4] |
| Coxeter plane | A5 | A3 | |
| Graph | |||
| Dihedral symmetry | [6] | [4] |
| Coxeter plane | B7 | D7 | D6 |
|---|---|---|---|
| Graph | |||
| Dihedral symmetry | [14/2] | [12] | [10] |
| Coxeter plane | D5 | D4 | D3 |
| Graph | |||
| Dihedral symmetry | [8] | [6] | [4] |
| Coxeter plane | A5 | A3 | |
| Graph | |||
| Dihedral symmetry | [6] | [4] |
This polytope is based on the7-demicube, a part of a dimensional family ofuniform polytopes calleddemihypercubes for beingalternation of thehypercube family.
There are 95 uniform polytopes with D7 symmetry, 63 are shared by the BC6 symmetry, and 32 are unique: