Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Steane code

From Wikipedia, the free encyclopedia
Code for quantum correction

TheSteane code is a tool inquantum error correction introduced byAndrew Steane in 1996. It is aCSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3]Hamming code to correct for bothqubit flip errors (X errors) and phase flip errors (Z errors). The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.

Itscheck matrix instandard form is

[H00H]{\displaystyle {\begin{bmatrix}H&0\\0&H\end{bmatrix}}}

where H is theparity-check matrix of the Hamming code and is given by

H=[100101101011010010111].{\displaystyle H={\begin{bmatrix}1&0&0&1&0&1&1\\0&1&0&1&1&0&1\\0&0&1&0&1&1&1\end{bmatrix}}.}

The[[7,1,3]]{\displaystyle [[7,1,3]]} Steane code is the first in the family of quantum Hamming codes, codes with parameters[[2r1,2r12r,3]]{\displaystyle [[2^{r}-1,2^{r}-1-2r,3]]} for integersr3{\displaystyle r\geq 3}. It is also a quantum color code.

Expression in the stabilizer formalism

[edit]
Main article:stabilizer formalism

In a quantum error-correcting code, the codespace is the subspace of the overall Hilbert space where all logical states live. In ann{\displaystyle n}-qubitstabilizer code, we can describe this subspace by its Pauli stabilizing group, the set of alln{\displaystyle n}-qubit Pauli operators which stabilize every logical state. The stabilizer formalism allows us to define the codespace of a stabilizer code by specifying its Pauli stabilizing group. We can efficiently describe this exponentially large group by listing itsgenerators.

Since the Steane code encodes one logical qubit in 7 physical qubits, the codespace for the Steane code is a2{\displaystyle 2}-dimensional subspace of its27{\displaystyle 2^{7}}-dimensional Hilbert space.

In thestabilizer formalism, the Steane code has 6 generators:

IIIXXXXIXXIIXXXIXIXIXIIIZZZZIZZIIZZZIZIZIZ.{\displaystyle {\begin{aligned}&IIIXXXX\\&IXXIIXX\\&XIXIXIX\\&IIIZZZZ\\&IZZIIZZ\\&ZIZIZIZ.\end{aligned}}}

Note that each of the above generators is the tensor product of 7 single-qubit Pauli operations. For instance,IIIXXXX{\displaystyle IIIXXXX} is just shorthand forIIIXXXX{\displaystyle I\otimes I\otimes I\otimes X\otimes X\otimes X\otimes X}, that is, an identity on the first three qubits and anX{\displaystyle X} gate on each of the last four qubits. The tensor products are often omitted in notation for brevity.

The logicalX{\displaystyle X} andZ{\displaystyle Z} gates are

XL=XXXXXXXZL=ZZZZZZZ.{\displaystyle {\begin{aligned}X_{L}&=XXXXXXX\\Z_{L}&=ZZZZZZZ.\end{aligned}}}

The logical|0{\displaystyle |0\rangle } and|1{\displaystyle |1\rangle } states of the Steane code are

|0L=18[|0000000+|1010101+|0110011+|1100110+|0001111+|1011010+|0111100+|1101001]|1L=XL|0L.{\displaystyle {\begin{aligned}|0\rangle _{L}=&{\frac {1}{\sqrt {8}}}[|0000000\rangle +|1010101\rangle +|0110011\rangle +|1100110\rangle \\&+|0001111\rangle +|1011010\rangle +|0111100\rangle +|1101001\rangle ]\\|1\rangle _{L}=&X_{L}|0\rangle _{L}.\end{aligned}}}

Arbitrary codestates are of the form|ψ=α|0L+β|1L{\displaystyle |\psi \rangle =\alpha |0\rangle _{L}+\beta |1\rangle _{L}}.

References

[edit]
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Steane_code&oldid=1221445652"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp