Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Stanton number

From Wikipedia, the free encyclopedia
Dimensionless parameter in fluid mechanics
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Stanton number" – news ·newspapers ·books ·scholar ·JSTOR
(December 2009) (Learn how and when to remove this message)

TheStanton number (St), is adimensionless number that measures the ratio of heat transferred into a fluid to thethermal capacity of fluid. The Stanton number is named afterThomas Stanton (engineer) (1865–1931).[1][2]: 476  It is used to characterizeheat transfer in forcedconvection flows.

Formula

[edit]

St=hGcp=hρucp{\displaystyle \mathrm {St} ={\frac {h}{Gc_{p}}}={\frac {h}{\rho uc_{p}}}}

where

It can also be represented in terms of the fluid'sNusselt,Reynolds, andPrandtl numbers:

St=NuRePr{\displaystyle \mathrm {St} ={\frac {\mathrm {Nu} }{\mathrm {Re} \,\mathrm {Pr} }}}

where

The Stanton number arises in the consideration of the geometric similarity of the momentumboundary layer and the thermal boundary layer, where it can be used to express a relationship between theshear force at the wall (due toviscous drag) and the total heat transfer at the wall (due tothermal diffusivity).

Mass transfer

[edit]

Using the heat-mass transfer analogy, a mass transfer St equivalent can be found using theSherwood number andSchmidt number in place of the Nusselt number and Prandtl number, respectively.

Stm=ShLReLSc{\displaystyle \mathrm {St} _{m}={\frac {\mathrm {Sh_{L}} }{\mathrm {Re_{L}} \,\mathrm {Sc} }}}[4]

Stm=hmρu{\displaystyle \mathrm {St} _{m}={\frac {h_{m}}{\rho u}}}[4]

where

Boundary layer flow

[edit]

The Stanton number is a useful measure of the rate of change of the thermal energy deficit (or excess) in the boundary layer due to heat transfer from a planar surface. If the enthalpy thickness is defined as:[5]

Δ2=0ρuρuTTTsTdy{\displaystyle \Delta _{2}=\int _{0}^{\infty }{\frac {\rho u}{\rho _{\infty }u_{\infty }}}{\frac {T-T_{\infty }}{T_{s}-T_{\infty }}}dy}

Then the Stanton number is equivalent to

St=dΔ2dx{\displaystyle \mathrm {St} ={\frac {d\Delta _{2}}{dx}}}

for boundary layer flow over a flat plate with a constant surface temperature and properties.[6]

Correlations using Reynolds-Colburn analogy

[edit]

Using the Reynolds-Colburn analogy for turbulent flow with a thermal log and viscous sub layer model, the following correlation for turbulent heat transfer for is applicable[7]

St=Cf/21+12.8(Pr0.681)Cf/2{\displaystyle \mathrm {St} ={\frac {C_{f}/2}{1+12.8\left(\mathrm {Pr} ^{0.68}-1\right){\sqrt {C_{f}/2}}}}}

where

Cf=0.455[ln(0.06Rex)]2{\displaystyle C_{f}={\frac {0.455}{\left[\mathrm {ln} \left(0.06\mathrm {Re} _{x}\right)\right]^{2}}}}

See also

[edit]

Strouhal number, an unrelated number that is also often denoted asSt{\displaystyle \mathrm {St} }.

References

[edit]
  1. ^Hall, Carl W. (2018).Laws and Models: Science, Engineering, and Technology. CRC Press. pp. 424–.ISBN 978-1-4200-5054-7.
  2. ^Ackroyd, J. A. D. (2016)."The Victoria University of Manchester's contributions to the development of aeronautics"(PDF).The Aeronautical Journal.111 (1122):473–493.doi:10.1017/S0001924000004735.ISSN 0001-9240.S2CID 113438383. Archived fromthe original(PDF) on 2010-12-02.
  3. ^Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (2006).Transport Phenomena. John Wiley & Sons. p. 428.ISBN 978-0-470-11539-8.
  4. ^abFundamentals of heat and mass transfer. Bergman, T. L., Incropera, Frank P. (7th ed.). Hoboken, NJ: Wiley. 2011.ISBN 978-0-470-50197-9.OCLC 713621645.{{cite book}}: CS1 maint: others (link)
  5. ^Crawford, Michael E. (September 2010)."Reynolds number".TEXSTAN. Institut für Thermodynamik der Luft- und Raumfahrt - Universität Stuttgart. Retrieved2019-08-26.
  6. ^Kays, William; Crawford, Michael; Weigand, Bernhard (2005).Convective Heat & Mass Transfer. McGraw-Hill.ISBN 978-0-07-299073-7.
  7. ^Lienhard, John H. (2011).A Heat Transfer Textbook. Courier Corporation. p. 313.ISBN 978-0-486-47931-6.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Stanton_number&oldid=1269977147"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp