Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Stan (software)

From Wikipedia, the free encyclopedia
Probabilistic programming language for Bayesian inference
For other uses, seeStan (disambiguation).
Stan
Original authorStan Development Team
Initial releaseAugust 30, 2012 (2012-08-30)
Stable release
2.37.0[1] Edit this on Wikidata / 2 September 2025; 5 months ago (2 September 2025)
Written inC++
Operating systemUnix-like,Microsoft Windows,Mac OS X
PlatformIntel x86 - 32-bit,x64
TypeStatistical package
LicenseNew BSD License
Websitemc-stan.org
Repository

Stan is aprobabilistic programming language forstatistical inference written inC++.[2] The Stan language is used to specify a (Bayesian)statistical model with animperative program calculating the logprobability density function.[2]

Stan is licensed under theNew BSD License. Stan is named in honour ofStanislaw Ulam, pioneer of theMonte Carlo method.[2]

Stan was created by a development team consisting of 52 members[3] that includesAndrew Gelman, Bob Carpenter, Daniel Lee, Ben Goodrich, and others.

Example

[edit]

A simple linear regression model can be described asyn=α+βxn+ϵn{\displaystyle y_{n}=\alpha +\beta x_{n}+\epsilon _{n}}, whereϵnnormal(0,σ){\displaystyle \epsilon _{n}\sim {\text{normal}}(0,\sigma )}. This can also be expressed asynnormal(α+βXn,σ){\displaystyle y_{n}\sim {\text{normal}}(\alpha +\beta X_{n},\sigma )}. The latter form can be written in Stan as the following:

data{int<lower=0>N;vector[N]x;vector[N]y;}parameters{realalpha;realbeta;real<lower=0>sigma;}model{y~normal(alpha+beta*x,sigma);}

Interfaces

[edit]

The Stan language itself can be accessed through several interfaces:

In addition, higher-level interfaces are provided with packages using Stan as backend, primarily in theR language:[4]

  • rstanarm provides a drop-in replacement for frequentist models provided by base R andlme4 using the R formula syntax;
  • brms[5] provides a wide array of linear and nonlinear models using the R formula syntax;
  • prophet provides automated procedures fortime seriesforecasting.

Algorithms

[edit]

Stan implements gradient-basedMarkov chain Monte Carlo (MCMC) algorithms for Bayesian inference, stochastic, gradient-basedvariational Bayesian methods for approximate Bayesian inference, and gradient-basedoptimization for penalized maximum likelihood estimation.

Automatic differentiation

[edit]

Stan implements reverse-modeautomatic differentiation to calculate gradients of the model, which is required by HMC, NUTS, L-BFGS, BFGS, and variational inference.[2] The automatic differentiation within Stan can be used outside of the probabilistic programming language.

Usage

[edit]

Stan is used in fields including social science,[9]pharmaceutical statistics,[10]market research,[11] andmedical imaging.[12]

See also

[edit]
  • PyMC is a probabilistic programming language in Python
  • ArviZ a Python library for Exploratory Analysis of Bayesian Models

References

[edit]
  1. ^"Release 2.37.0". 2 September 2025. Retrieved15 September 2025.
  2. ^abcdeStan Development Team. 2015.Stan Modeling Language User's Guide and Reference Manual, Version 2.9.0
  3. ^"Development Team".stan-dev.github.io. Retrieved2024-11-21.
  4. ^Gabry, Jonah."The current state of the Stan ecosystem in R".Statistical Modeling, Causal Inference, and Social Science. Retrieved25 August 2020.
  5. ^"BRMS: Bayesian Regression Models using 'Stan'". 23 August 2021.
  6. ^Hoffman, Matthew D.; Gelman, Andrew (April 2014)."The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo".Journal of Machine Learning Research.15:pp. 1593–1623.
  7. ^Kucukelbir, Alp; Ranganath, Rajesh; Blei, David M. (June 2015). "Automatic Variational Inference in Stan".1506 (3431).arXiv:1506.03431.Bibcode:2015arXiv150603431K.{{cite journal}}:Cite journal requires|journal= (help)
  8. ^Zhang, Lu; Carpenter, Bob; Gelman, Andrew; Vehtari, Aki (2022). "Pathfinder: Parallel quasi-Newton variational inference".Journal of Machine Learning Research.23 (306):1–49.
  9. ^Goodrich, Benjamin King, Wawro, Gregory and Katznelson, Ira, Designing Quantitative Historical Social Inquiry: An Introduction to Stan (2012). APSA 2012 Annual Meeting Paper. Available atSSRN 2105531
  10. ^Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W.; Kinnersley, Nelson; Heilmann, Cory R.; Ohlssen, David; Rochester, George (2013). "The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group".Pharmaceutical Statistics.13 (1):3–12.doi:10.1002/pst.1595.ISSN 1539-1612.PMID 24027093.S2CID 19738522.
  11. ^Feit, Elea (15 May 2017)."Using Stan to Estimate Hierarchical Bayes Models". Retrieved19 March 2019.
  12. ^Gordon, GSD; Joseph, J; Alcolea, MP; Sawyer, T; Macfaden, AJ; Williams, C; Fitzpatrick, CRM; Jones, PH; di Pietro, M; Fitzgerald, RC; Wilkinson, TD; Bohndiek, SE (2019)."Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis".Journal of Biomedical Optics.24 (12):1–13.arXiv:1811.03977.Bibcode:2019JBO....24l6004G.doi:10.1117/1.JBO.24.12.126004.PMC 7006047.PMID 31840442.

Further reading

[edit]

External links

[edit]
Public domain
Open-source
Freeware
Commercial
Cross-platform
Windows only
Excel add-ons
Retrieved from "https://en.wikipedia.org/w/index.php?title=Stan_(software)&oldid=1291370927"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp