Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Spore

From Wikipedia, the free encyclopedia
(Redirected fromSporulating)
Unit of reproduction adapted for dispersal and survival in unfavorable conditions
This article is about spores in eukaryotes. For bacterial spores, seeendospore. For other uses, seeSpore (disambiguation).

Spores produced in a sporic life cycle.
Fresh snow partially covers rough-stalked feather-moss(Brachythecium rutabulum), growing on athinned hybrid black poplar(Populus x canadensis). The last stage of themoss lifecycle is shown, where thesporophytes are visible before dispersion of their spores: thecalyptra (1) is still attached to thecapsule (3). The tops of thegametophytes (2) can be discerned as well. Inset shows the surrounding, black poplars growing on sandyloam on the bank of akolk, with the detail area marked.

Inbiology, aspore is a unit ofsexual (in fungi) orasexual reproduction that may be adapted fordispersal and for survival, often for extended periods of time, in unfavourable conditions.[1] Spores form part of thelife cycles of manyplants,algae,fungi andprotozoa.[2] They were thought to have appeared as early as the mid-lateOrdovician period as an adaptation of early land plants.[3]

Bacterial spores are not part of a sexual cycle, but are resistant structures used for survival under unfavourable conditions.[4]Myxozoan spores release amoeboid infectious germs ("amoebulae") into their hosts for parasitic infection, but also reproduce within the hosts through the pairing of two nuclei within the plasmodium, which develops from the amoebula.[5]

In plants, spores are usuallyhaploid andunicellular and are produced bymeiosis in thesporangium of adiploidsporophyte. In some rare cases, a diploid spore is also produced in some algae, or fungi.[6] Under favourable conditions, the spore can develop into a neworganism usingmitotic division, producing amulticellulargametophyte, which eventually goes on to produce gametes. Two gametes fuse to form azygote, which develops into a new sporophyte. This cycle is known asalternation of generations.

The spores ofseed plants are produced internally, and the megaspores (formed within the ovules) and the microspores are involved in the formation of more complex structures that form the dispersal units, theseeds andpollen grains.

Definition

[edit]

The termspore derives from theancient Greek word σποράspora, meaning "seed, sowing", related to σπόροςsporos, "sowing", and σπείρεινspeirein, "to sow".

In common parlance, the difference between a "spore" and a "gamete" is that a spore will germinate and develop into asporeling, while a gamete needs to combine with another gamete to form a zygote before developing further.

The main difference between spores and seeds asdispersal units is that spores are unicellular, the first cell of a gametophyte, while seeds contain within them a developing embryo (the multicellular sporophyte of the next generation), produced by the fusion of the male gamete of the pollen tube with the female gamete formed by the megagametophyte within the ovule. Spores germinate to give rise to haploid gametophytes, while seeds germinate to give rise to diploid sporophytes.

Classification of spore-producing organisms

[edit]

Plants

[edit]

Vascular plant spores are alwayshaploid. Vascular plants are eitherhomosporous (or isosporous) orheterosporous. Plants that are homosporous produce spores of the same size and type.

Heterosporous plants, such asseed plants,spikemosses,quillworts, andferns of the orderSalviniales produce spores of two different sizes: the larger spore (megaspore) in effect functioning as a "female" spore and the smaller (microspore) functioning as a "male". Such plants typically give rise to the two kind of spores from within separate sporangia, either amegasporangium that produces megaspores or amicrosporangium that produces microspores. In flowering plants, these sporangia occur within the carpel and anthers, respectively.

Fungi

[edit]

Fungi commonly produce spores during sexual and asexual reproduction. Spores are usuallyhaploid and grow into mature haploid individuals throughmitotic division of cells (Urediniospores andTeliospores among rusts are dikaryotic).Dikaryotic cells result from the fusion of two haploid gamete cells. Among sporogenic dikaryotic cells, karyogamy (the fusion of the two haploid nuclei) occurs to produce a diploid cell. Diploid cells undergo meiosis to produce haploid spores.[citation needed]

Classification of spores

[edit]

Spores can be classified in several ways such as by their spore producing structure, function, origin during life cycle, and mobility.

Below is a table listing the mode of classification, name, identifying characteristic, examples, and images of different spore species.

Mode of ClassificationNameIdentifying CharacteristicExample Spore Containing OrganismImage
Spore Producing StructureSporangiosporeProduced bysporangiumZygomycetes
Sporangium of Fungi
ZygosporesProduced byzygosporangiumZygomycetes
Zygospores onRhizopus
AscosporesProduced byascusAscomycetes
Ascospores ofDidymella Rabiei
BasidiosporesProduced bybasidiumBasidiomycetes
Typical reproductive structure of abasidiomycete, including thebasidiospore andbasidium
AecisporesProduced byaeciumRusts and Smuts
Aecia on foliage
UrediniosporesProduced by urediniumRusts and Smuts
Uredinospores
TeliosporesProduced byteilumRusts and Smuts
Microscopic image of teliospores
OosporesProduced byoogoniumOomycetes
Oospores ofPhytophthora agathidicida
CarposporesProduced by carposophorophyteRed Algae
Light microscopy ofPolysiphonia showing a carpospores and carposporophyte inside
TetrasporesProduced bytetrasphorophyteRed Algae
Tetraspores ofPolysiphonia
FunctionChalmydosporeThick-walledresting spores of fungi produced to survive in unfavorable conditionsAsomycota
Pseudohyphae, chlamydospores andblastospores ofCandida yeast.
Parasitic Fungal SporeInternal SporesGerminate within a host
A parasitic pink fungi on aLichen tree
External (Environmental) sporesSpores released by the host to infest other hosts[7]
Origin During Life CycleMeiosporesMicrosporesProduced sexually throughmeiosis, and give rise to a malegametophytePollen in seed plants
Inplants,microspores, and in some cases megaspores, are formed from all four products of meiosis.
Megaspores (macrospores)Produced sexually throughmeiosis, and give rise to a femalegametophyteOvule in seed plants
In contrast, in manyseed plants and heterosporousferns, only a single product of meiosis will become amegaspore (macrospore), with the rest degenerating.
MitosporesProduced asexually thoughmitosisAscomycetes
Ascomycete containing mitospores
MobilityZoosporesMobile throughflagellaSome algae and fungi
Microscopic image of a Zoospore
AplanosporesImmobile, however still produce flagella
AutosporesImmobile spores thatdo not produce flagella
Autospores of a strain ofJenufa aeroterrestrica
BallistosporesForcibly discharged from the fungalfruiting body due to internal force (such as built up pressure)Basidiospores and/or part of the genusPilobus
Ballistospore mechanism of dispersal from fungi
StratismosporesForcibly discharged from the fungalfruting body due to external force (such as raindrops or passing animals)Puffballs
Puff Balls containing Stratismospores

External anatomy

[edit]

Fossil trilete spores (blue) and a spore tetrad (green) ofLate Silurian origin
Tricolpate pollen ofRicinus

Under highmagnification, spores often have complex patterns or ornamentation on their exterior surfaces. A specialized terminology has been developed to describe features of such patterns. Some markings represent apertures, places where the tough outer coat of the spore can be penetrated when germination occurs. Spores can be categorized based on the position and number of these markings and apertures.Alete spores show no lines. Inmonolete spores, there is a single narrow line (laesura) on the spore.[8] Indicating the prior contact of two spores that eventually separated.[3] Intrilete spores, each spore shows three narrow lines radiating from a center pole.[8] This shows that four spores shared a common origin and were initially in contact with each other forming a tetrahedron.[3] A wider aperture in the shape of a groove may be termed acolpus.[8] The number of colpi distinguishes major groups of plants.Eudicots havetricolpate spores (i.e. spores with three colpi).[9]

Spore tetrads and trilete spores

[edit]
Main article:Evolutionary history of plants

Envelope-enclosed spore tetrads are taken as the earliest evidence of plant life on land,[10] dating from the mid-Ordovician (early Llanvirn, ~470 million years ago), a period from which no macrofossils have yet been recovered.[11]Individual trilete spores resembling those of moderncryptogamic plants first appeared in the fossil record at the end of the Ordovician period.[12]

Dispersal

[edit]
Spores being ejected by fungi.

In fungi, both asexual and sexual spores or sporangiospores of many fungal species are actively dispersed by forcible ejection from their reproductive structures. This ejection ensures exit of the spores from the reproductive structures as well as travelling through the air over long distances. Many fungi thereby possess specialized mechanical and physiological mechanisms as well as spore-surface structures, such ashydrophobins, for spore ejection. These mechanisms include, for example, forcible discharge of ascospores enabled by the structure of the ascus and accumulation ofosmolytes in the fluids of the ascus that lead to explosive discharge of the ascospores into the air.[13]

The forcible discharge of single spores termedballistospores involves formation of a small drop of water (Buller's drop), which upon contact with the spore leads to its projectile release with an initial acceleration of more than 10,000g.[14] Other fungi rely on alternative mechanisms for spore release, such as external mechanical forces, exemplified bypuffballs. Attracting insects, such as flies, to fruiting structures, by virtue of their having lively colours and a putrid odour, for dispersal of fungal spores is yet another strategy, most prominently used by thestinkhorns.

In Common Smoothcap moss (Atrichum undulatum), the vibration of sporophyte has been shown to be an important mechanism for spore release.[15]

In the case of spore-sheddingvascular plants such as ferns, wind distribution of very light spores provides great capacity for dispersal. Also, spores are less subject to animal predation than seeds because they contain almost no food reserve; however they are more subject to fungal and bacterial predation. Their chief advantage is that, of all forms of progeny, spores require the least energy and materials to produce.

In the spikemossSelaginella lepidophylla, dispersal is achieved in part by an unusual type ofdiaspore, atumbleweed.[16]

Origin

[edit]

Spores have been found inmicrofossils dating back to the mid-lateOrdovician period.[3] Two hypothesized initial functions of spores relate to whether they appeared before or after land plants. The heavily studied hypothesis is that spores were an adaptation of early land plant species, such asembryophytes, that allowed for plants to easily disperse while adapting to their non-aquatic environment.[3][17] This is particularly supported by the observation of a thick spore wall incryptospores. These spore walls would have protected potential offspring from novel weather elements.[3] The second more recent hypothesis is that spores were an early predecessor of land plants and formed during errors in themeiosis ofalgae, a hypothesized early ancestor of land plants.[18]

Whether spores arose before or after land plants, their contributions to topics in fields likepaleontology and plantphylogenetics have been useful.[18] The spores found in microfossils, also known as cryptospores, are well preserved due to the fixed material they are in as well as how abundant and widespread they were during their respective time periods. These microfossils are especially helpful when studying the early periods of earth as macrofossils such as plants are not common nor well preserved.[3] Both cryptospores and modern spores have diverse morphology that indicate possible environmental conditions of earlier periods of Earth and evolutionary relationships of plant species.[3][18][17]

Gallery

[edit]
  • Spores of the moss Bartramia ithyphylla. (microscopic view, 400x)
    Spores of themossBartramia ithyphylla. (microscopic view, 400x)
  • Dehisced fern sporangia. (microscopic view, no spores are visible)
    Dehisced fern sporangia. (microscopic view, no spores are visible)
  • Spores and elaters from a horsetail. (Equisetum, microscopic view)
    Spores and elaters from a horsetail. (Equisetum, microscopic view)
  • Fossil plant spores (Scylaspora) from Silurian deposits of Sweden.
    Fossil plant spores (Scylaspora) from Silurian deposits of Sweden.
  • Fruit mold with spores and distinguishable cellular growth. (2000x)
    Fruit mold with spores and distinguishable cellular growth. (2000x)
  • Spore clusters, formed inside sporangia of the slime mold Reticularia olivacea, from pine forests of eastern Ukraine.
    Spore clusters, formed inside sporangia of the slime moldReticularia olivacea, from pine forests of easternUkraine.
  • Internal surface of the peridium of the slime mold Tubifera dudkae with spores.
    Internal surface of theperidium of the slime moldTubifera dudkae with spores.

See also

[edit]

References

[edit]
  1. ^Setlow, Peter; Johnson, Eric A. (30 April 2014), Doyle, Michael P.; Buchanan, Robert L. (eds.),"Spores and Their Significance",Food Microbiology, Washington, DC, USA: ASM Press, pp. 45–79,doi:10.1128/9781555818463.ch3,ISBN 978-1-68367-058-2, retrieved13 December 2023
  2. ^"Tree of Life Web Project". Archived fromthe original on 5 February 2018. Retrieved5 February 2018.
  3. ^abcdefghWellman, C. H.; Gray, J. (29 June 2000)."The microfossil record of early land plants".Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.355 (1398):717–731, discussion 731–732.doi:10.1098/rstb.2000.0612.ISSN 0962-8436.PMC 1692785.PMID 10905606.
  4. ^Abel-Santos, Ernesto (2012).Bacterial spores: current research and applications. Norfolk: Caister academic press.ISBN 978-1-908230-00-3.
  5. ^Ivan Fiala (10 July 2008)."Myxozoa".Tree of Life Web Project. Archived fromthe original on 16 February 2015. Retrieved14 January 2014.Myxospores consist of several cells, which are transformed to shell valves, nematocyst-like polar capsules with coiled extrudible polar filaments and amoeboid infective germs.
  6. ^"Diploid Spore - an overview | ScienceDirect Topics".www.sciencedirect.com.Archived from the original on 13 December 2023. Retrieved13 December 2023.
  7. ^"Biology of Microsporidia". 26 June 2008. Archived fromthe original on 26 June 2008. Retrieved24 March 2024.
  8. ^abcPunt, W.; Hoen, P. P.; Blackmore, S.; Nilsson, S. & Le Thomas, A. (2007). "Glossary of pollen and spore terminology".Review of Palaeobotany and Palynology.143 (1):1–81.Bibcode:2007RPaPa.143....1P.doi:10.1016/j.revpalbo.2006.06.008.
  9. ^Judd, Walter S. & Olmstead, Richard G. (2004)."A survey of tricolpate (eudicot) phylogenetic relationships".American Journal of Botany.91 (10):1627–44.doi:10.3732/ajb.91.10.1627.PMID 21652313.
  10. ^Gray, J.; Chaloner, W. G.; Westoll, T. S. (1985)."The Microfossil Record of Early Land Plants: Advances in Understanding of Early Terrestrialization, 1970–1984".Philosophical Transactions of the Royal Society B.309 (1138):167–195.Bibcode:1985RSPTB.309..167G.doi:10.1098/rstb.1985.0077.JSTOR 2396358.
  11. ^Wellman CH, Gray J (2000)."The microfossil record of early land plants".Philosophical Transactions of the Royal Society B.355 (1398):717–732.doi:10.1098/rstb.2000.0612.PMC 1692785.PMID 10905606.
  12. ^Steemans, P.; Herisse, A. L.; Melvin, J.; Miller, M. A.; Paris, F.; Verniers, J.; Wellman, C. H. (2009)."Origin and Radiation of the Earliest Vascular Land Plants"(PDF).Science.324 (5925): 353.Bibcode:2009Sci...324..353S.doi:10.1126/science.1169659.hdl:1854/LU-697223.ISSN 0036-8075.PMID 19372423.S2CID 206518080.Archived(PDF) from the original on 22 September 2017. Retrieved1 November 2017.
  13. ^Trail F. (2007)."Fungal cannons: explosive spore discharge in the Ascomycota".FEMS Microbiology Letters.276 (1):12–8.doi:10.1111/j.1574-6968.2007.00900.x.PMID 17784861.
  14. ^Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005). "The captured launch of a ballistospore".Mycologia.97 (4):866–71.doi:10.3852/mycologia.97.4.866.PMID 16457355.
  15. ^Johansson, Lönnell, Sundberg and Hylander (2014) Release thresholds for moss spores: the importance of turbulence and sporophyte length. Journal of Ecology, n/a-n/a.
  16. ^"False Rose of Jericho – Selaginella lepidophyllaFalse Rose of Jericho – Selaginella lepidophylla".Plant- and Flower guide. February 2009.Archived from the original on 15 July 2011. Retrieved1 February 2010.
  17. ^abNorem, W. L. (1958)."Keys for the Classification of Fossil Spores and Pollen".Journal of Paleontology.32 (4):666–676.ISSN 0022-3360.JSTOR 1300785.
  18. ^abcStrother, Paul K.; Foster, Clinton (13 August 2021)."A fossil record of land plant origins from charophyte algae".Science.373 (6556):792–796.Bibcode:2021Sci...373..792S.doi:10.1126/science.abj2927.ISSN 0036-8075.PMID 34385396.
Subdisciplines
Plant groups
Plant anatomy
Plant cells
Tissues
Vegetative
Reproductive
(incl. Flower)
Surface structures
Plant physiology
Materials
Plant growth
and habit
Reproduction
Plant taxonomy
Practice
  • Lists
  • Related topics
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Spore&oldid=1276783321"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp