The spiral shares the global (blue) and intensive (red) behavior
In mathematics, thespiral optimization (SPO) algorithm is ametaheuristic inspired byspiral phenomena in nature.
The first SPO algorithm was proposed fortwo-dimensional unconstrained optimization[1]based on two-dimensional spiral models. This was extended ton-dimensional problems by generalizing the two-dimensional spiral model to an n-dimensional spiral model.[2]There are effective settings for the SPO algorithm: the periodic descent direction setting[3]and the convergence setting.[4]
The motivation for focusing on spiral phenomena was due to the insight that the dynamics that generatelogarithmic spirals share the diversification and intensification behavior. The diversification behavior can work for a global search (exploration) and the intensification behavior enables an intensive search around a current found good solution (exploitation).
The SPO algorithm is amultipoint search algorithm that has noobjective function gradient, which uses multiple spiral models that can be described as deterministic dynamical systems. As search points follow logarithmic spiral trajectories towards the common center, defined as the current best point, better solutions can be found and the common center can be updated.
The general SPO algorithm for a minimization problem under the maximum iteration (termination criterion) is as follows:
0) Set the number of search points and the maximum iteration number.1) Place the initial search points and determine the center,, and then set.2) Decide the step rate by a rule.3) Update the search points:4) Update the center: where.5) Set. If is satisfied then terminate and output. Otherwise, return to Step 2).
The search performance depends on setting the compositerotation matrix, the step rate, and the initial points. The following settings are new and effective.
This setting is an effective setting for high dimensional problems under the maximum iteration. The conditions on and together ensure that the spiral models generate descent directions periodically. The condition of works to utilize the periodic descent directions under the search termination.
Set as follows: where is the identity matrix and is the zero vector.
Place the initial points at random to satisfy the following condition:
where. Note that this condition is almost all satisfied by a random placing and thus no check is actually fine.
Set at Step 2) as follows: where a sufficiently small such as or.[3]
This setting ensures that the SPO algorithm converges to astationary point under the maximum iteration. The settings of and the initial points are the same with the above Setting 1. The setting of is as follows.
Set at Step 2) as follows: where is aniteration when the center is newly updated at Step 4) and such as. Thus we have to add the following rules about to the Algorithm:
The algorithms with the above settings aredeterministic. Thus, incorporating some random operations make this algorithm powerful forglobal optimization. Cruz-Duarte et al.[5] demonstrated it by includingstochastic disturbances in spiral searching trajectories. However, this door remains open to further studies.
To find an appropriate balance between diversification and intensification spirals depending on the target problem class (including) is important to enhance the performance.
Many extended studies have been conducted on the SPO due to its simple structure and concept; these studies have helped improve its global search performance and proposed novel applications.[6][7][8][9][10][11]
^Tamura, K.; Yasuda, K. (2011). "Primary Study of Spiral Dynamics Inspired Optimization".IEEJ Transactions on Electrical and Electronic Engineering.6 (S1):98–100.doi:10.1002/tee.20628.S2CID109093423.
^abTamura, K.; Yasuda, K. (2020). "The Spiral Optimization Algorithm: Convergence Conditions and Settings".IEEE Transactions on Systems, Man, and Cybernetics: Systems.50 (1):360–375.doi:10.1109/TSMC.2017.2695577.S2CID126109444.
^Nasir, A. N. K.; Tokhi, M. O. (2015). "An improved spiral dynamic optimization algorithm with engineering application".IEEE Transactions on Systems, Man, and Cybernetics: Systems.45 (6):943–954.doi:10.1109/tsmc.2014.2383995.S2CID24253496.
^Benasla, L.; Belmadani, A.; Rahli, M. (2014). "Spiral optimization algorithm for solving combined economic and Emission Dispatch".International Journal of Electrical Power & Energy Systems.62:163–174.Bibcode:2014IJEPE..62..163B.doi:10.1016/j.ijepes.2014.04.037.